ANEOTys

ตjo

جـى.ال.سانخايان

ترجمه :

نعمت الله اكبرى محسن رنانى

Otor

سانخايان

ترجمه :
دكتر محسن رنانى
نعمتالله اكبرى

Introduction to the Economics of Agricultural Production

P.L. SANKHAYAN

Senior Farm Econimist,
Department of Economics and Sociology
Punjab Agricultural University, Ludhiana
Prentice Hall of India

نشر هشتبهشت
(اصفهان، صندوت تستى (AFFQ-IVF)

$$
\begin{aligned}
& \text { هرTمدى بر اقتصاد توليل كشاورزى } \\
& \text { سانخايان، ب. ال } \\
& \text { ترجمد : اكبرى، نعدتاله ـ رنانى، يحسن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تيراز : 1000 } \\
& \text { حرونجينى : انديشه } \\
& \text { ليتورانى و جابٍ : نهفت } \\
& \text { مين حقوق محفوظ است }
\end{aligned}
$$

فهر ست منابع

تدوين و مباحث اين كتاب بر باي ايه مطالبى است كـي

 توابع توليد همراه با مشتقات مناسب و مفيد مريو

 جنبهمايى از عامل زمان در آنها گنجانده شو شود. سرانجان براى بهينهسازى در شرايط ريسك و و عدم اطمينان ارينان، ارايائه مى
 بايد آن را با مطالعات مكمل از مجلات و كتابهاى مختلف تكميل كنند. پ.ل.سانخايان

1. Punjab Agricultural University

2. Specification

3. Production environment

فصل اول

مقكهمه
اقتصاد توليد كشاورزى '، شاخهالى از اقتصاد است كه توليد رادر صنعت مز رعهداریى

 نياز، يا تركيب از آن دو -در سطح خرد ياكلان مى باشد. هرگاه مسائل مورد بردسى در سـي
 مىنامند. به هر حال تمايز ميان اقتصاد توليد كشاورزى و مديريت مزير مز رعه بسيار ظريف استر است
 كار، ساده سازى بيش از حد دنياى واقعى است ــ بلكه تجزيه و تحليل محيطهاى توليدى با با شرايط يويا و مخاطرهآميز رانيز دربر مى يُيرد.

1-1- موضوع يزوهش

 مالف) سهيرند، عبارتلند از :

 ديذگاه سياست گذارى، با توجه به اهداف معين همجون بهبود توزيع درآمد ــاز طريق كاهـ

1 Economics of Agricultural production
3. Farm Management
2. Farming Industry
4. Subject Matter

شكاف ميان فقرا و اغنيا - مىتوان بر اهميت جنين مباحثى، در دو سطح خرد و كلان، تأكيد كرد.
ب)بازذدههاى نسبت به مقياس
 بازدههاى نسبت به مقياس با اين مسأله سر و كار دارند كه وتتى تمامى عوامل توليد بـطور

 حدا كثر سازى سود مرتبط است، ابزار مفيدى نيز براى تعيين حشُماندازهانى رشد بلند مدت در كثاورزى است.
ب)جانشينى عوامل「
امكان جانشينى بين عوامل مختلف توليد نيز همواره دارام اهميت زيادى است. درجه
قابليت جانشينى بين عوامل توليد، در طول زمان تغيير مىكيند. درجه جانئينى تعيين مىكند آيا

ت) سهم عوامل وبازذدههاى نسبت به مقياس
همواره ممكن است بخواهيم رفتار سهم عوامل را همراه با تغيير در مقياس بدانيم. ث) تحول فنى ${ }^{9}$
 زمينه، دو نوع تحول فنى، تجسم يافته و تجسم نيافته افزايش بازدهى در نتيجهُ تغيير در شكل كالاههاى سرمايهاى نوع تجسميافته تحول فنى است.

1. Returens of Scale
2. Economic Environment
3. Incidence of Taxes

2. Factor Subtitution

4. Factors price Behaviour
5. Technical change
[^0]تغييرات كمتر محسوس اماكاملاً مهمى نيز مى تواند بانو آورى در سازمان توليد ايجاد شود،

 سرمايه گذارى جديد مىگردند. ج) كارايـي

 Leibenstein بازدهى آنها اندكك است و جامعه در نقطهانى در داخل مرز امر امكانات توليد قرار دار دارد). ممكن

 تخصيصى متمركز شده است.

كشاورزى را بطور كلى مى توان اين حنين خلاصه نماني
 محصولات مختلف كشاورزى و واحدهاى دامثرورى
 بنگاههاى گوناگون و بررسى تغيير در مقدار بهينه و مقدار فعلى توليد آنها

1. x - Inefficiency
2. Comparatively static Econemic Environment

سـ تجزيه و تحليل دلايل هر گونه تفاوت بين مقادير بهينه و مقادير موجود مور منابع

'

روشى كه برای دستيابى به اهداف مورد نظر در اقتصاد توليد كشاورزى به به كار گرفته

 اين بخش بطور مختصر مورد بحث قرار گر فته است.

ا- - - ا- روش تابع توليد

1. The Approach	2. Von Thunen
3. Wicksteed	4. Wicksell
5. Hicks	6. Carlson
7. Dano	8. Frisch

 جديد براى تجزيه و تحليل رفتار توليد " المور r-r-1

 متغير هاى اقتصادى مقادير منفى بدست آيد كه بـدون مفهوم است، دوم اين كه وقتى تابع هدف

 قرار گيرند.
مسأله عمومى برنامهريزى را مى توان اين گونه بيان كرد : تعيين مجموعهاى از مقادير

9. Monger

11. Production Behaviour
12. Hit and trial Method
13. The lagrangian multiplier method
14. Samuelson
15. Budgeting
16. Mathematical programing

$$
\begin{align*}
& \text { برای متغيرهاى } \\
& Z=F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{1-1}\\
& f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left\{\begin{array}{c}
\underset{y}{4} \\
\underset{y}{4}
\end{array}\right\} b_{i}, \quad i=1,2, \ldots, m \quad(r-1) \\
& \text { و با توجه به محدوديتهاى غيرمنفى } \\
& x_{j} \geqslant 0, \quad j=1,2, \ldots, n \tag{array}
\end{align*}
$$

در رابطه (Y-Y)، هر محدوديت فقط و فقط دارایى يكى از علامتهاى كا

 گستر داهى دارد.
بحث درباره تكنيكه هاى برنامهريزى، موضوع اصلى اين اين كتاب نيست، همين قدر بس،

 حداكثر كنـد.

همان گونه كه گفتيم روش تابع توليد با جزئياتش در اين كتاب مورد بحث قرار خواهد

1. Subject to m constrationts

2. Linear programing problem

3. The Terminology

$$
\begin{aligned}
& \text { گرفت،وازءههاى تخصصى، هرجاكه برای اولين بار آمدهاند، تعريف شدهاند. حروف درشت، } \\
& \text { بيانگ, محصولات مختلف و متغير هاى نـهادهایى } X_{1}, X_{2}, \ldots, X_{n}, \lambda_{1}, \lambda_{2} \ldots ., \lambda_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { يا نهادهها را نشان مىدهند. }
\end{aligned}
$$

منابع براى مطالعه بيشتر

Dano, Sven, Industrial Production Models. Springer-Verlag, New York, 1966. Dillon, J.L., The Analysis of Response in Crop and Livestock Produciion, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 1.
Fuss, Melvyn and Daniel McFadden (eds.), Production Economics: A Dual Approach to Theory and Applications, Vol. I, The Theory of Production, North-Holland, Amsterdam, 1978, Ch. II.I.
Heady, E.O. and J.L. Dillon, Agricultural Production Functions, Iowa State University Press, Ames, Iowa, 1961, Chs. 3 and 6.
Hicks, J.R., Value and Capital, Clarendon Press, Oxford, 1939.
Naylar, T.H. and J.M. Vernon, Microeconomics and Decision Models of the Firm, Harcourt, Brace and World, New York, 1969, Ch. 3.

فصل دوم

تابع توليدكشاورزى'

تابع وليدكثكار زیى رادر شكل صريج عوبمى آن میتوان بمورت زير نوشت:

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{m} ; x_{m+1}, x_{m+2}, \ldots, x_{l}\right) \tag{1-Y}
\end{equation*}
$$

كه yمتغير وابسته يا تابعى از $x_{1}, x_{2} \ldots, x_{L}$, در اينجا yعبار تست از ستاده مىباشند. بايد تو جه داشت كه در اينجا مقادير ستادهها و نهادهها بر حسب نرخهاى جارى در هر واحد زمان هستند.

رابطه (Y- (Y) فقط بر يك تابع رياضى يا رابطه بين مقدار Yاز ستاده Y بعنوان متغير وابسته و مقادير مستقلانده دلالت دارد. اين مغهوم تابع توليد كاملاً عمومى است. يكك تابع توليد ويزه ممكن است بو سيله يك نقطه تنها، يكك تابع تكى ييو سته يا نابيوسته يا بو سيله سيستمى از معادلات نشان داده شود.
مشكل واقعى اين رابطه، بستگى به محيط زيستشناختى r و اقتصادي دارد و بر آورد
 بعدى توليد است.

[^1] متفاوت استفاده مى كند، شكل عمومى تابع توليد را بصورت ضضمنى مى توان چجنين نمايش داد:
$$
f\left(y_{1}, y_{2}, \ldots, y_{m} ; x_{1}, x_{2}, \ldots, x_{l}\right)=0
$$

در جائيكه :

$$
y_{k} \geqslant 0(k=1,2, \ldots, m)
$$

مقادير محصولات و (x x x_{i}

r- - - - ا-طبقهبندى متغير هاى مستقل

 دستهبندى كرد، كه در اينجا آنها را مورد بحث قرار مىدهيمـ.

- - - - - -

$x_{n} \uplus x_{1}$ متغير هاث تصميه، نهادههاى

 ممكن است بعضى ديگر در طول برنامه ريزى مور د نظر ثابت باقىى بمانند.

متغير هاى از قبل تعيين شده - -

1. Multiproduct
2. Multifactor
3. Classification of Independent Variables
4. Deciesion variables
5. Predetermined variables
6. Uncertain variables

را در رابطه (Y - ا تشكيل مىدهند. سطوح تصميمگيرى براى تصميمگيرنده مشخص مى باشند. توانائى در كتترل اين سطوح فقط از اطلاعات دربارئ آنها استفاده كند.

隹
دسته سوم متغير هاى مستقل در رابطه ((- ا)، متغير هايى نامعين مى باشند، اين متغير ها بوسيله است؛ سطوح اين متغير هانامعين است، بنابراين براى تصميمگيرنـده شــناخته شــده نـيستند و نمى توان آنها راكتترل نمود.

بعضى مواقع عوامل توليد نيز به عوامل ثابت و متغير تقسيمبندى مى شُونغ. براى توليّل
 كو تاه مدت كارفرماى اقتصادى برای حدا كثر نمودن سود، بايد هز ينه اين گونه نهادهوها را متحمل شود. از طرف ديگر مقدار نهادههاى متغير با ستاده توليد شده متغير مى باشند. تفاي بين اين دو مجموعه نهادهها، فقط در مسأله زمان است. البته اين تفاوت نسبى استير است، بطوريك
 همه نهادهما هر آينه متغير مى آشاشند.

 نامتجانس ${ }^{\text { }}$ بزنند كه از ديدگاه تئورى، درست باشد، تنها به يك تا تابع نامتجانس دبست مى يابند. اين حنين

1. Fitted production function
2. Hybrid production function
3. Hybrid surface
4. Theorically True surface

معمول، تابع نامتجانس، بى فايده است، مغر آنكه به اندازه كافى با تابع درست نظرى مشابهت داشته باشد.

'r-|- انواع توابع توليد

 از حند ين عامل توليد صورت مى در تحقيقات كثاورزى مورد استفاده ڤرار مىگيرند كه بوسيله روابط (Y-Y) الى (Y Y Y Y Y بيان شده است.
r- - - ج- ج-

$$
\begin{equation*}
y=a_{0}+\Sigma a_{i} x_{i} \tag{r-r}
\end{equation*}
$$

اين تابع راعموماً يك تابع توليد خطى مىدانند.
$x_{i}^{b i}{ }^{2}{ }^{\text {r }}$

$$
y=a_{0}+\sum a_{1} x_{i}^{b_{1}}+\Sigma a_{l l} x_{i}^{2 b_{1}}+\Sigma \Sigma a_{i j} x_{i}^{b_{1}} x_{j}^{b_{1}}, \quad i<j \quad(\mu-Y)
$$

وقتى است. وقتى درجه دوم در مطالعات مربوط به وا كنش كود كاملاً متداول است.

[^2]\[

$$
\begin{align*}
& \text { 0T-r-「 } \\
& y=M-\Sigma A_{i} R_{i}^{x_{1}} \tag{f-r}
\end{align*}
$$
\]

$$
y=a_{0} \Pi\left(1-a_{i}^{x_{1}}+b_{i}\right)
$$

＇تابع－Y－Y－Y

$$
\begin{equation*}
\ln y=\ln a_{0}+\Sigma a_{i} \ln x_{i} \tag{7-r}
\end{equation*}
$$

ي

$$
y=a_{0} \Pi . ._{i}^{a_{i}}
$$

اين تابع توليد بسيار عمومى و بصورت گـترده در تحقيقات كشاورزى مورد استفاده

$$
\begin{align*}
& \ln y=\ln a_{0}+\sum_{i} \sum_{j} a_{i j} \ln \left(x_{i}+x_{j}\right) / 2 \tag{V-r}\\
& \text { 「 「 } \\
& y=a_{0} \Pi x_{i}^{a} e^{b_{i} x_{i}}
\end{align*}
$$

$$
\begin{align*}
& \ln y=\ln a_{0}+\Sigma a_{i} \ln x_{i}+\frac{1}{2} \sum_{i} \sum a_{i j}\left(\ln x_{i}\right)\left(\ln x_{j}\right) \\
& \text { اين شكل تابع در بخش كشاورزى در حـال حـاضر نسـبتاً مستداول گـرديده است، } \\
& \text { خصوصاً برای استفاده از تابع سود، بيشتر معمول است. } \\
& \text { - تابع مقاومته- } \\
& y^{-1}=a_{0}+\Sigma a_{l}\left(b_{i}+x_{i}\right)^{-1}
\end{align*}
$$

[^3]
\[

$$
\begin{equation*}
y=A\left[\delta x_{1}^{-p}+(1-\delta) x_{2}^{-p}\right]^{-1 / p} \tag{11-r}
\end{equation*}
$$

\]

$$
\begin{equation*}
\left.y=a_{0} \Pi x_{i}^{f_{i}\left(x_{1}, x_{2}, \ldots, x_{i}\right)} e^{g\left(x_{1}, x_{i}\right.}, \ldots, x_{i}\right) \tag{IY-Y}
\end{equation*}
$$

 جندجملهاى در فصل سوم با جزئيات بيشتر مورد بحت قرار گر فتهانداند.
 محدوديتهاى زير تعريف شدهاند :
ا-دوره توليد بايد به اندازه كافى طولانى باشد تا فر آيندهاى فنى لازمَ، بتو انند تكميل شوند.
 عوامل ثابت مورد استفاده در توليد تغيير ايجاد نمايد.

 يك اصلاح جزئى بو سيله تخفيف دادن شرط دوم به بلندمدت تـن تعميم دادر

「

فروض مهم تجزيه تحليل تابع توليد عبارتند از :

ا- تابع توليد فقط براى مقادير غير منفى نهاده و ستاده تعريف شده است، بر حسب
رابطه (Y- () ، بدين مفهومكه :

$$
\begin{aligned}
& y \geqslant 0 \\
& x_{i} \geqslant 0, \quad i=1,2, \ldots, l
\end{aligned}
$$

[^4]2. Assumptions of production function analysis

Y-
مفهو است كه تابع توليد دارايى كارائى فنى است.

 , $X_{1}, \ldots, X_{2} X_{L}$ fـ مشـخصات تابع توليد حنين است :
الف) نزولى بودن بازده نهانى براى تمامى تركيبات عامل ـ محصول ب) نزولى بودن نرخ جانشينى نـنى بين هر دو دو عامل ج) صعودى بودن نرخ تبديل بين هر دو محصول. اين مشخصات بصورت رياضى اينگونه بيان مى شود:

$$
\begin{array}{r}
\frac{\partial^{2} y}{\partial x_{i}^{2}}<0, \quad i=1,2,3, \ldots, l \\
\frac{d^{2} x_{i}}{d x_{j}^{2}}<0, \quad i, j=1,2,3, \ldots, l(i \neq j) \\
\frac{d^{2} y_{j}}{d y_{j}^{2}}>0, \quad i, j=1,2,3, \ldots, m(i \neq j)
\end{array}
$$

 نسبت به محور نهادهها، منحنى هاى توليد همسان محدب و منحنى هاى تبديل توليد مسقع
 برشمريم، به هرحال اين يك تجربه عمومى در توليد كشثاورزيست كه سطع نهاده است. اما تجربه عمومى توليدكشاورزى نشان مىدهد كه با افزايش مقدار نهاده

1. Non-vanishing

درصل در تمامى متغيرهاى نهادهها، موجب افزايش كمتر از يك درصد درد در ستاده مى شود. بعبارت ديگر دوبرابر كردن تمامى نهادهما مو جب دوبرابر شدن ستاده نمى شود. اين فرض را مىتوان بصورت رياضى توضيح داد :

$$
\begin{equation*}
\Sigma\left(x_{i} / y\right)\left(\partial y / \hat{c}_{x_{i}}\right)<1, \quad i=1,2, \ldots, l \tag{IT-Y}
\end{equation*}
$$

7ـ ماهيت دقيق' تابع توليد بنگاه، بوسيله مجموعهاى از تصميمات فنى اتخاذ شُده
توسط توليدكننده تعيين مى شود.

V V تمامى محصولات و عو امل توليد بطور كامل تقسيم يذ ير مى باشند.

 اگر يك يا حند فرض از فروض قبلى نقض شود روش تجزيه و و تحليل تابع توليد فرو

مىريزد.

 مجموعه جديدى از فروض به جاى فروض ياد شده مى بانشند.

ץ ץ-

 توليد انجام مى شود. در اين قسمت بعضى از استتاجهاى مهـم بطور مختصر مورد بحث قرار قـرار گرفتهاند.

[^5]2. Theoretical deductions from the production functions

Xi' ${ }^{\prime}$ 'تليد متوسط نهاده
توليد متوسط نهاده X_{i} ، عبار تست از ستاده توليد شده در هر واحد از نهاده

 آن را مورد استفاده قرار داد، منوط به اينكه ستاده بصورت فيزيكى ياري يا ارزشيى اندازه گيرى شودءتوليد متوسط بطور رياضى عبارتست از :

$$
A F_{i}=\frac{y}{x_{i}}=\frac{f\left(x_{i}, x_{1}^{0}, x_{2}^{0}, \ldots, x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{1}^{0}\right)}{x_{i}} \quad(ץ-\mid \vee)
$$

[^6]بايد دقت داشت كه در اينجا لوقط قسمت وا كنش ' تابع توليد است. بنابراين عرض از از مبدأ بايد از تابع توليدكل بدست آيد. در سرتاسر اين متن، توان صفر ائ دلالت بر اين داين داردكه نهاده
A در يك نقطه از منحنى تابع توليد، برابر است با شيب خطى $A P_{i}$
 شده است كه برابر است با توليد نهائى 「
توليد نهائى نيز ممكن است دلالت بر توليدنهائى فيزيكى يا ارزشى داشته باشده بسته به اينكه توليد كل داراى حگكونه مقياسى است. توليد نهائى نهاده
 تعيين شدهاى ثابت بماند. توليد نهائى به صورت رياضى عانى عبار تست از :

$$
M P_{i}=\frac{c y}{\partial x_{i}}=f_{i}^{\prime}\left(x_{i}, x_{1}^{0}, x_{2}^{0}, \ldots, x_{i-1}^{0}, x_{i+1}^{\prime \prime}, \ldots, x_{1}^{\prime \prime}\right)
$$

 شده است؛ كه با $A P_{i}$ اين نقطه برابر است. بوسيله رسم ثارهخ

 صفر قراردادن مشتق جزئى نسبت به

$$
\begin{align*}
\frac{d A P_{1}}{d x_{1}} & =\left[x_{i} f^{\prime}\left(x_{1}, x_{1}^{0} \ldots, x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{i}^{0}\right)\right. \\
& \left.-f\left(x_{1}, x_{1}^{0}, \ldots, x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{1}^{0}\right)\right] / x_{i}^{2}=0 \tag{19-r}
\end{align*}
$$

$$
\begin{aligned}
& x_{i} f^{\prime}\left(x_{i}, x_{1}^{\prime}, \ldots, x_{i-1}^{(1)}, x_{i+1}^{0}, \ldots, x_{i}^{(1)}\right) \\
& \quad-f\left(x_{i}, x_{1}^{(1)}, x_{2}^{\prime \prime}, \ldots, x_{i-1}^{(1)}, x_{i+1}^{0}, \ldots, x_{i}^{0}\right)=0
\end{aligned}
$$

حال اگر عبارت دوم رابطه بالا رابه سمت راست برده و سس هر دوطرف رابطه رابر

$$
\begin{align*}
& f^{\prime}\left(x_{i}, x_{1}^{0}, x_{2}^{0}, \ldots, x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{1}^{0}\right) \\
& \left.\quad=\frac{f\left(x_{i}, x_{1}^{0}, \ldots, x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{1}^{0}\right)}{x_{i}} \quad\left(\gamma_{0}\right)-Y\right)
\end{align*}
$$

بنابراين در نقطهايكه 1 است $M P_{i}=A P_{i}$ ددر حداكثر خود قرار دار همانند $A P_{i}$ متفاوتى كه به

كشش توليد'
كشش توليد، يا عكسالعمل، نسبت به نهاده Xi عبارتست از درصد تغيير در مقدار

[^7]ستاده Y در نتيجه يك درصد تغيير در مقدار اين نهاده، در حاليكه تمامى نهادهماى ديگر، در در
 اندازه گيرى است.

كشش توليد نسبت به نهاده

$$
\begin{align*}
E_{p_{i}} & =\frac{\% \Delta \operatorname{in} y}{\% \Delta \operatorname{in} x_{i}}=\frac{\partial \ln y}{\partial \ln x_{i}} \\
& =\frac{\partial y}{\partial x_{i}} \frac{x_{i}}{y}=\frac{\partial y}{\partial x_{i}}-\frac{1}{y / x_{i}}=\frac{M P_{i}}{A P_{i}}
\end{align*}
$$

بدين ترتيب، كشش توليد نسبت به نهاده i در يك سط

 و و $A P$ منحنى توليد همسان
 تركيبات سطوح دو نهاده
 رياضى مىتوان آن رااز تابع توليد عمومى استخراج كرد، بطوريكه : $x_{i}=g\left(x_{j}, x_{1}^{0}, x_{2}^{0}, \ldots x_{i-1}^{0}, x_{i+1}^{0}, \ldots, x_{j-1}^{0}, x_{j+1}^{0}, \ldots, x_{i}^{0}, y^{0}\right)(Y Y-Y)$

 (r-r) با دامنه

1. Local measure
2. Isoquant
3. Isoproduct curve
4. Relevant Zone of Production

درباره منحنى هاى توليد همسان، وقتى شكلهاى خاص توابع توليد اريد همراه

 منحنى توليد همسانى كه نسبت به مركز مختصات دور تر واق گرديده، گوياى ستاده بيشتر

[^8]نوع بازده خبر مىدهل، بسته به اينكه آيا فاصله بين منحنى هاى هم مقدارى متوالى، ثُابت باقى مى ماند يا نه.البته اين فاصلهها با يد در امتداد شعاعى كه از مركز مـختصات رسم مسىشود،
 منحنى توليد همسان نشان دهنده بازده ثابت، فزاينده و.كاهنده نسبت به مقياس است. بسته به
 امكان وجود دارد كه نقشه منحنى توليد همسان نشان دهنده هر سه نوع بازده نسـبت به مقياس در يكك نمو دار مشابه باشد.
نرخ جانشينى فنى (RTS)'
تو جه داريد كه AB كمان منحنى توليد همسان است، بطوريكه در شكل ((Y - Y) نشان
 مى مى شودو برعكس. شيب منفى منحنى توليد همسان بيان كننده نرخ جانشينى فـنى است. در شكل (F-Y) نرخ جانشينى فنى نهاده

$$
R T S_{j i}=-\frac{d x_{i}}{d x_{j}}, \quad i \neq j
$$

[^9]وقتى شيب كمانى مانند AB مانند ABبراى يك منحنى توليد همــان منفى بـاشدل

 سطع معين ستاده،
 حال توجه كنيد كه منحنى توليد همسان فقط برایى دو نهاده بصورت زير نشان داده

$$
\begin{equation*}
x_{i}=g\left(x_{j}, y^{0}\right) \tag{Yf-Y}
\end{equation*}
$$

 شرا بدست آورد. برای حركت كو حكى در طول كمان AB تغييرى در سطح ستاده

$$
\begin{aligned}
& d y=\frac{\partial y}{\partial x_{i}} d x_{i}+\frac{\partial y^{\prime}}{\partial x_{j}} d x_{j}=0 \\
& \left.-\frac{d x_{i}}{d x_{j}}=\frac{\partial y}{\partial x_{j}} \right\rvert\, \frac{\partial y}{d x_{i}}
\end{aligned}
$$

$$
-\frac{d x_{i}}{d x_{j}}=R T S_{j i}, \quad \frac{\partial y}{\partial x_{i}}=M P_{j}, \quad \frac{\partial y}{\partial x_{i}}=M P_{i}
$$

بنابراين

$$
R T S_{j i}=M P_{j} / M P_{i}
$$

بد بد

خطوط شيب همسان'
اين خطوط، محل اتصال مكان هندسى نقاطى است كه مـنحنى هاى تـوليد هــيمسان متوالى بالاتر، در نقشَه منحنى توليد همسان داراى شيب برابر مى باششند. بنابراين نقاط متصل شده خطوط شيب همسان، نرخ جانشينى فنى برابرى را در نقشه منحنى توليد همسان نشــان مىدهد.
معادله خط شيب همسان، را مى توان بوسيله برابرى RTS با يك مقدار ثابت مانند C
، نوشت.

$$
R T S_{j i}=-\frac{d x_{i}}{d x_{j}}=c, \quad j \neq i
$$

كه در اينجا ، Cيك عدد حقيقى است. تمامى خطوط شيب همان ممكن است به طرف يك نقطه مشخص در فضاى رأس متمايز ${ }^{\text {الا مىرود يا نه. }}$

مسير توسعه「

معادله خط شيب همسان بو سيله برابرى RTS مقدار ثابت، نسبت قيمتهاى هر واحد نهاده باشد، آنوقت مسير توسعه تحقق مى يابد. بدين ترتيب معادله مسير توسعه عبار تست از :

$$
\begin{equation*}
R T S_{j i}=-\frac{d x_{i}}{d x_{j}}=\frac{p_{j}}{p_{i}}, \quad i \neq j \tag{Y૫-Y}
\end{equation*}
$$

در اينجا

1. Isoclines

2. Single point

3. Expansion path

F F . در واقع مسير توسعه، منحنى شيب همسان خاصى است كه در طول آن توليد بسط خواهل يـافت، در حاليكه قيمت عوامل ثابت باقى مى مانند. بنابراين مسير تو سعه نبـان دهندهُ چجگونگگى تـغيير نسبىى مـقدار نهادهها در حالت تغيير توليد يا هزينههاست، در حاليكه فيمت نهاددها تا آخر ثابت خواهد ماند (م).

مسيرى هستند كه در شُ ايط قيمتى معين، با افزايش ستاده، نهادهها با يكد يگر تركيب مىشوند. يك تصميمگيرنده معقول فقط تركيبات نهادهاىى راكه در مسير توسعه قرار دارد انـتخاب مىكند. مسير توسعه در واقع يكت تابع ضمنى ' از

$$
g\left(x_{i}, x_{j}\right)=0
$$

بايد بطور روشن متو جه شده باشيد كه منفى بودن نسبت قيمت نهاده، بيان كننده شيب
 د در بازار دقابت كامل را مى توان اينگونه نوشت :

$$
\begin{equation*}
c=p_{i} x_{l}+p_{j} x_{j}+a \tag{YV-Y}
\end{equation*}
$$

كه در اينجا، ديگر نهادهها در سطوح معين ثابت فرض شده است. حال خط هزينه برابر را مىتوان اينغونه تعريف كرد كه مكان هندسى x و و x x_{i} ممكن است به قيمت هزينهاى مانند Cْ خريدارى شده

باشند، بدين ترتيب :

$$
\begin{align*}
& c^{0}=p_{i} x_{l}+p_{j} x_{j}+a \\
& \text { اگگر معادله (Y - } \\
& x_{i}=\frac{c^{0}-a}{p_{i}}-\frac{p_{j}}{p_{i}} x_{j} \tag{ra-r}
\end{align*}
$$

كه معادله خطط هزينه برابر داراى شيب و عرض از مبدأ مى باشد. بدين ترتيب شيب X_{i} خط هزينه برابر مى باشد كه بايد خريدارى شود (ذر صورت عدم خريد از

توليد همسان و خطوط هزينه برابر رانشالن مىدهد. شعاع OA، بيان كنتده مسير توسعه است كه مكان هندسى نقاط مماس بين خطوط هزينه برابر و منحنى هاى توليد هـير همسان مى مباشد.

خطوطمرزی'
خطوط مرزى، خطوط شيب مهسان خاص با با شيب صفر يا بينهايت مىباشند. بدين
ترتيب معادلات خطوط مرزى را مى توان اينگونه نوشت :
$R T S_{j l}=-\frac{d x_{i}}{d x_{j}}=0, \quad i \neq j$

$$
R T S_{\| t}=-\frac{d x_{i}}{d x_{j}}=\infty, \quad i \neq j
$$

1. Ridge lines

$$
R T S_{i j}=-\frac{d x_{j}}{d x_{l}}=0, \quad i \neq j
$$

هرگاه تابع توليد داراى يكك رأس متمايز ' باشد داراى حدا كثر سطح ستاده مـعين
 داده شده است. در هر ناحيه، مقادير MPi و و MP مشخ

 دريابد كه خرا نواحى ديگر غير منطقى مىباشند.

[^10]

 در گذشته كشش جانشينى به L عامل بسط داده شد. بعضى مواقع اين مفهوم به كشش مستير مستيم
 است. كثش جانشينى به سهولت تغيير در نسبت نهاده را به عكس العمل تغيير ايجاد شده در نسبت قيمتهاى نهاده اندازه گيرى مىكند. از تابع توليد عمومى مى توان استنتاج كر د بطور ريكه :
$$
E S_{j i}=\frac{\% \Delta\left(x_{i} / x_{j}\right)}{\% \Delta\left(-d x_{i} / d x_{j}\right)}
$$
$$
E S_{j l}=\frac{d\left(x_{i} / x_{j}\right)}{d\left(-d x_{i} / d x_{j}\right)} \frac{-d x_{i} / d x_{j}}{x_{i} / x_{j}}, \quad i \neq j \quad(\mu \mu-\Upsilon)
$$

به گونه ديگر نيز مىتوان بيان كرد بطوريكه :

$$
E S_{j i}=\frac{d \ln \left(x_{i} / x_{j}\right)}{d \ln \left(-d x_{i} / d x_{j}\right)}
$$

جیگ,

 جه حد مى تواند در توليد، جانشين نهاده ديگُر گردد.

1. Elasticity of substitution
2. Joan Robinson
3. H.R.Hicks
4. Direct Elasticity of factor subtitution
5. Local Measures

$$
\begin{aligned}
& \text { از آنجاكه براى تركيب نهادlاى كمترين هزينه داريم' } \\
& -\frac{d x_{i}}{d x_{j}}=\frac{P_{j}}{P_{i}}
\end{aligned}
$$

كه نهاده را بصورت ديگرى نيز مى توان تعريف كرد، يعنى :

$$
E S_{j l}=\frac{\% \Delta\left(\bar{x}_{i} / \bar{x}_{j}\right)}{\% \Delta\left(p_{j} / p_{i}\right)}=\frac{d \ln \left(\bar{x}_{i} / \bar{x}_{j}\right)}{d \ln \left(p_{j} / p_{i}\right)}
$$

ي

$$
E S_{j i}=\frac{d\left(\bar{x}_{i} / \bar{x}_{j}\right)}{d\left(p_{j} / p_{i}\right)} \frac{\left(p_{j} / p_{i}\right)}{\left(\bar{x}_{i} / \bar{x}_{j}\right)}
$$

در رابطه (Y (Y
 در نسبتهاى عوامل نسبى در نتيجه يك در دصد تغيير در قيمتهاى عوامل نسبى است.

 درصد تغيير در سطح نهاده j ز

$$
\begin{align*}
E S_{l i} & =-\frac{\% \Delta \text { in } x_{l}}{\% \Delta \text { in } x_{j}} \\
& =-\frac{\Delta x_{i}}{\Delta x_{j}} \frac{x_{j}}{x_{i}}
\end{align*}
$$

در حد، بطور يكه

$$
\begin{equation*}
E S_{j t}=-\frac{d x_{i}}{d x_{j}} \frac{x_{j}}{x_{i}} \tag{rv-r}
\end{equation*}
$$

كه بر آورد مربو ط به يك نقطه خاص در منحنى توليد هسسان داده شده است. مى توان

1. Least cost Input combination
2. Least cost Input levels

$$
E S_{t j}=1 / E S_{i}^{i}
$$

توابع هزينه، عرضه و تقاضا'

توابع توليد كشاورزى اساساً براى بدست آوردن توابع هزينه، عرضه يا تقاضا برآورد نشدهاند. به هر حال، اين جنين روابطى وا بعضى مواقع مىتوان به منظرر TKـاهى دربـاره بارامترهاى إساسى تهيه نمود.
برایى سهولت، تابع توليد تواندار، ارتباط مشترك بيشترى نسبت به تمامى توابع بـا اقتصاد كشاورزى دارد و براى استخراج هزينه كو تاه مدت و توابع عرضه و تقاضاى ايستا، مورد استفاده قرار مىگيرد آنها را مورد بحث قراء قرار مىدهيم.

اـ توابع هزينه

$$
\begin{align*}
& \text { : اجازه بدهيد تابع توليد را اينگونه بنويسيم } \\
& y=a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}}
\end{align*}
$$

در رابطه (Y-Y $x_{2}^{a 2}$ عامل X ${ }_{1}$ كه مى تواند تغيير كند. بنابراين علاوه بر نيز ثابت است.

نوشته مىشود :

$$
\begin{equation*}
y=b x_{1}^{a_{2}} \tag{rq-r}
\end{equation*}
$$

از رابطه (- ـ

$$
x_{1}=b^{-1 / a_{2}} y^{1 / a_{1}}
$$

معادله هزينه كل مربوط به تابع توليد (ץ^-

[^11]$$
c=k+p_{1} x_{1}
$$

در اينجا C، هزينه كل، ${ }^{\text {K }}$ و
جانشين نمودن مقدار

$$
\begin{equation*}
c=k+b^{-1 / a_{1}} p_{1} y^{1 / a_{1}} \tag{FY-Y}
\end{equation*}
$$

(FY-Y) (عبارتند از :

$$
\begin{align*}
& \frac{C}{y}=A T C=k y^{-1}+b^{-1 / a_{1}} p_{1} y^{1 ; a_{1}-1} \\
& \frac{d c}{d y}=M C=\frac{1}{a_{1}} b^{-1 / a_{1}} p_{1} y^{1 / a_{1}-1} \tag{FF-Y}
\end{align*}
$$

 مدت (ATC) و هزينه نهائى كوتاه مدت (MC) بسيار ساده و نياز به تمرين از قبل ند ندارد
 مى شوند و مقادير مختلف قيمت هر واحد نهاده متغير،

'r تابع عرضه ايستابرای ستاده

 حداكثر نمودن سود تحت شرايط رقابت كامل در كثاورزى، هزينه نهائى (Y-Y

مساوى درTآمد نهائى قرار داد كه در اينجا قيمت هر واحد 1 Py است. بدين ترتيب :

$$
\frac{1}{a_{1}} b^{-1 / a_{1}} p_{1} y^{1 / a_{1}-1}=p_{y}
$$

حال از رابطه (Y - Y (F) ، y

$$
\begin{equation*}
y=\left(a_{1} p_{1}^{-1} b^{\left.1 / a_{1}\right)^{a_{1} /\left(1-a_{1}\right)} p_{y}^{a_{1} /\left(1-a_{1}\right)} .}\right. \tag{Fq-Y}
\end{equation*}
$$

معادله (Y (F - Y) ، نشان دهنده سطح ستاده y مى باشُد، بطوزيكه تابعى است از قيمت
 تابع عرضه را در دو قسمت بنويسيم :

$$
\begin{aligned}
& y=0 \text { for } p_{y}<\min A V C \\
& y=g\left(p_{y}\right) \text { for } p_{y} \geqslant \min A V C
\end{aligned}
$$

در شرايط دنياى واقعى كه با معايبى مانند شيوع ريسكك و عدم اطمينان در ضرائب

 هست)"

[^12]
Hـ تابع تقاضاى ايستا براى نهاده

اين تابع رانيز مى توان از تابع توليد داده شـده تحت شرايط عادى ريا رقابت كامل با با هدف

 داده شدهاند.

$$
\begin{equation*}
\frac{d y}{d x_{1}}=a_{1} b x_{1}^{a_{1}-1} \tag{FV-Y}
\end{equation*}
$$

وقتى كه y در رابطه ((Y - و
 بدون قيد سر مايه، زمان، ريسك و عدم اطمينان، MPPI بايد با نسبت قيمت محصول عاميل برابر باشد يعنى :

$$
a_{1} b x_{1}^{a_{1}-1}=p_{1} / p_{y}
$$

 (

$$
\begin{align*}
& \pi=p_{y} b x_{1}^{a_{1}}-p_{1} x_{1} \tag{Fq-r}\\
& \text { با مساوى صشر قرارداد مشتق مر تبه اول رابطه (YQ - Y) ، داريم : } \\
& \frac{d \pi}{d x_{1}} a_{1} p_{y} b x_{1}^{a_{1}-1}-p_{1}=0
\end{align*}
$$

[^13]كه رابطه بدست آمده (ץ^-ץ) را مى توان مرتب نمود.

\[

$$
\begin{aligned}
x_{1} & =\left(\frac{p_{1} / p_{y}}{a_{1} b}\right)^{1 /\left(a_{1}-1\right)}: \\
x_{1} & =\left(\frac{1}{a_{1} b p_{y}}\right)^{1 /\left(a_{1}-1\right)} p_{1}^{1 /\left(a_{1}-1\right)} \\
\left(\frac{1}{a_{1} b p_{y}}\right)^{1 /\left(a_{1}-1\right)} & =k
\end{aligned}
$$
\]

بدين ترتيب رابطه ((\$1-) ، خلاصه مىشود.

$$
x_{1}=k p_{1}^{1 /\left(u_{1}-1\right)}
$$

 است، بطور يكه تابع تقاضاى (ادستورى)"' براى نهاده

 ارتباط دارد.

 حال شكل تابع سود عبارتست از :

$$
\pi=p_{y} a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}}-p_{1} x_{1}-p_{2 x_{2}}
$$

[^14]با پِيدا نمودن مشُتقات جزئى نسبت به قراردادن هركدام از آنها، خواهيم داشت :

$$
\begin{aligned}
& \frac{\partial \pi}{\partial x_{1}}=p_{y} a_{0} a_{1} x_{1}^{a_{1}-1} x_{2}^{a_{2}}-p_{1}=0 \\
& \frac{\partial \pi}{\partial x_{2}}=p_{y} a_{0} a_{2} x_{1}^{a_{1}} x_{2}^{a_{2}-1}-p_{2}=0
\end{aligned}
$$

با حل اين معادلات برای

$$
\begin{align*}
& x_{1}=\left(\frac{a_{1}}{p_{1}}\right)^{\left(1+a_{2}\right) / k}\left(\frac{a_{2}}{p_{2}}\right)^{a_{2} / k}\left(a_{0} p_{y}\right)^{1 / k}=g_{1}\left(p_{1}, p_{2}, p_{y}\right) \\
& x_{2}=\left(\frac{a_{1}}{p_{1}}\right)^{a_{1} / k}\left(\frac{a_{2}}{p_{2}}\right)^{\left(1-a_{1}\right) / k}\left(a_{0} p_{y}\right)^{1 / k}=g_{2}\left(p_{1}, p_{2}, p_{y}\right)
\end{align*}
$$

جائيكه نهاده افزايش يابد، تقاضا با افزايش قيمت محصول افزايش مى يابد.

ف) $a x^{2}+b x+c=0$
ب) $r_{0} x^{2}+q_{0} \circ x+11_{0} \circ=$ 。
 جائيكه yحداكثر است، اگر حداكثرى برا براى تابع وجود دارد بدست آوريد.
فالف $y=p_{0}+\circ / \Delta x$
(ج) $y=90-010 \circ \mu \mu x$
ب) $y=r \circ e^{3 x}$
ب) $y=a x^{h 1} e^{c+2 x}$
๔) $y=\mu_{\circ} \circ x^{0.5}$

ت) $y=10-0 / \gamma x+r \circ x^{2}$
*) $y=M-A R^{x}$

ث) $y=\gamma \cdot+\mu x-0 / r \mu x^{2}$
خ) $y=r \cdot x^{0.5} \tilde{e}^{-0.2 x}$

Y-Y- تابع واكنش كود و فسفات برای بادام زمينى در زير داده شده است :
$y=1 \wedge \circ+1 Y P \cdots / Y P^{2}$
$P_{2} O_{5}$ در اينجا yباز ده دانههاى بادام زمينى در هر هكتار و مقدار ماده غذائى مقو به كار رفته در هر هكتار است. تابع تقاضا را براى كود شيميانى فسفات بدست آوريد.
(Y Y - تابع عرضه مربو ط به تابع هزينه كل زير را استخراج كنيد. $C=\circ / y^{3}-\mu y^{2}+1 \circ y+\mu_{\circ}$

هـ - - تابع هز ينهُ نهايى زير داده شده است .
$M C=r v y^{2}-r q \circ y+1000$
تابع هز ينه كل مربوط را وقتى كه هزينه ثابت كل برابر yدر حداقل AVC جقدر است؟ اگر قيمت محصول حدا كثر سود ستاده را بر آورد كنيد.

Y - Y - معادله داده شلده است
$M P=\frac{\partial y}{\partial x}=10-01 \circ \uparrow x$
تابع توليد كل را بدست آوريد. همحنين Tیا معادله 1 ا مى توانيد بدست آوريد؟ مقدار MP $A P$ مربوط به $x=10$ و واحد را بر آورد كنيد. كشش توليد در اين نقطه چقدر خو اهد بود.

- Y-V
$\begin{array}{lll}\text { (الن }) y=a_{1} x_{1}^{2} & ب) \\ \text { (ا) } y=a_{1} x_{1}-a_{2} x_{2} & \text { ب) } y=a_{0} x_{1}^{a 1} x_{2}^{a 2} x_{3}^{a 3}\end{array}$
人اولر برقرار است، بنويسيد.

Y- 9 تابع توليد زير داده شده است :
$y=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{12} x_{1} x_{2}$
در اينجا yمقدار ستاده توليد شده و
届 الف ـ معادله منحنى توليد همسان را استخراج كنيد، شكل آن چچگونه است؟

 را براى توليد محصولى مانند Y مورد استفاده قرار مىدهد، پنانكه :

در اينجا
$y=a_{0} x_{1}^{a_{1}} x_{2}{ }^{a_{1}}$
קنانكه
$a_{2}=1-a_{1} \quad, \quad 0<a_{1}<1$

منابع براى مطالعه بيشتر

Allen, R.G.D., Mathematical Analysis for Economists, ELBS and MacMillan, London, 1968, Ch. 13.
Christensen, L.R., D.W. Jorgenson and L.J. Law, "Conjugate Duality and the Transcendental Logarithmic Functions", Econometrica, 39(4) (Abstract), 1971, pp 255-256.
Diewert, W.E., Separability and a Generalization of the Cobb-Douglas Cost, Production and Indirect Utility Functions, Institute for Mathematical Studies in the Social Sciences, Technical Report No. 86, Stanford University (California), 1973.
Dillon, J.L., The Analysis of Response in Crop and Livestock Production, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 1.
Heady, E.O. and J.L. Dillon, Agricultural Production Functions, Iowa State University Press, Ames, Iowa, 1961, Chs. 2 and 3.
Hicks, J.R., "Elasticity of Substitution Again: Substitutes and Complements", Oxford Economic Papers, 22 (3), 1970, pp 289-296.

روش شناسى تابع توليد'

روششناسى تحليل تابع توليد عمدتأ دربريكيرنده مراهل زير است: ا- تصريح مدل اتتصادى، يعنى تابع توليد. (اين مرحله مستلزم تدوين فرضيههايى استـي كه انگاثشت مى شوندن).
r|-اندازيز
 †- ب- بردسى مشكلات تخمين. هـ تخمين تابع توليه، با استفاده از روشهاى انتيا اتصادسنجى مناسب. و- ارزيبى تخمينها، يعنى رخايتبابخش بودن و و قابليت اعتماد تخمينهاى فراهم آمده به وسيله برخى ملا ككها نيين مىينود.

 مىاباشد. جزئيات مر كدام از اين مراحل در اين فصل بر برسى مىاشود.

「-ا تصريحمدل اقتصادى

[^15]2. Formulation of the Maintained Hypothesis

توليد در دنياى واقعى است. به هنگام تصريح يكك مدل اقتصادى، كه بیگمان مهمترين مرحله
 ا ـ انتخاب متغيرهاى مستقل و وابسته مناسب براى مدل. r بـ تعيين شكل رياضى ملى (يعنى تعيين اين كه آيا يكك معادله مناسب است يا يك يك سيستم معادلات، اين معادلات خطى باشلد يا غيرخطى، و الىى آخر).
 انجام رضايتبخش اين موارد مستلزم داشتن آگاهى هالى گستر داهى درباره جزئيات دقيق منطق فيزيكى، زيستشناختى و اقتصادى مربوط به فرآيند توليد است. فقدان آگاهیى درباره́ برخى جز ئيات يا درباره دشواريهاى محاسباتى، اغلب مىتواند مسنجر بـه بـرخـى

اكنون به بررسى تفصيلى تر هر كدام از اين سه جــزء تـصريح مــلنهأى اقـتصادى

انتخاب متغير ها

 كند. تعلاد متغير هايى كه بايد در مدل گْنجانده شونل. هرگًاه مدل مستلزم مصالحهإى بود د، دقت كنيد كه متغير هايى حذف شوند كه كمترين اهميت را دارند. همواره بايد به ياد داشته باشيدكه حذف يكـ يا جند متغير مناسب، ياگنجاندن يكك يا حند متغير نامناسب، ممكن است به خطاى تصريح بينجاملـ، كه در جايى خود مى تواند قابليت قبول مدل را در مطالعه تسجربى يسـيدهُ
|قتصادى كاهش دهد.

مدل تكمعادلهاى در برابر چند معادلهاى

همين كه متغير هاى مناسبى كه بايد در مدل گُنجانيله شوند، انتخاب گرديد، مهمترين و
 معادله انتخاب شود يا يك مدل حند مع مادلها|ى. همـحنين شكل دقيق معادله هاي رياضى بايد

مدلهابى تكمعادلهاى، بيان رضايتبخششى از چديدهُ اقتصادى مورد نظر ارائه دهند. با ايسن

 كشاورزى گيرايى چندانى نداشته باشد.

 رضايتبخشش ترين شكلى راكه تشخيص مىدهيدر، انتخاب كنيد.

 مناسب تلقى مىكنند. برخى ازمعيارهاى مهمى كه در انتـخاب يك شـكـل تـبعى مـناسب سودمند هستند، عبارتند از:

1- يارامتر هاى كمتر

تابع توليد كاب داگلاس' بسيار محبوبيت دارد، اين است كه درجه آزادى راكمتر كــاهش

「_ساقكى تفسيـــر

شكلهاى تبعى بسيار يیچیيده ، ممكن است موجب ييامدهاى نامطلوبى شوند كه در

 داراى ساختار روشن همراه با لاارامترهايى هستند كه تفسير اقتصادى آنها ذاتى و شُـهودى است، مرجح مىباشند.

"٪_ساكیى محاسباتى

مدلهاى Tامارى كه از نظر ثارامترهالخطى مىباشند، بخاطر سادگى محاساسباتى شان و نيز بخاطر داشتن تنورى آمارى كاملاً بسط يافتهتر، فراگير شدهاند. بيشرفتها

「†استحكام درونهو٪
شكل تبعى بايد در دامنه دادههاى مشاهده شده، نسبت به فرضيههاى انگاشته شده، خوشر فتار باشد.

هـ استحكامبرونهوّ

 فرضيههايى كه برایى خارج از دامنه دادههاى مشاهداتى انگاشته شدهانده سازگار باشد

علامت و اندازه يارامترها

[^16]سودمندى درباره جنبههاى خـاصى از مــحيط تـوليدى در دست بـر دسى، ارائـه دهـنـد و

 متغيرهاى توضيحى بستگى بر طبيعت محيط تـوليدى در دست بـر رسى دارد، امــا تـعداد متغير هايى كه سرانجام نگه داشته مى شُوند، در جا جاى پإرامترهاى مربوط به هر كدام از آنها، آزمـونهاى اقتتصادى، آمـارى و اقتصطادسنجى را باموفقيت پشت سرگذاشتهاند يا نها
در زير، دستورالعملهايى كلى براى كنارگذاشتن برخى متغير هاى توضيحى از تحليل
نهايى، ارئه شدهاند :
ا- متغيرهاى توضيحى كه داراى علامت غلط مى باشند (يعنى علامتى كه با مسنطق
شناخته شده اقتصادى يا زيست شناختى سازگار نمى باشد) بايد حذف شار شوند

「ץ-

تابليت اعتماد توابع توليد تخمين زده شده شديداً به اين مسأله بستگى دارد كه داده ها ها

 باشد. اين گونه توابع توليد تخمينز

[^17]كشاورزى، انو اع ناهمگون نهادههاى توليد را مى توان بر حسب ارزش آنها، جمع زد. اين فقط روشى است برای ساده كردن كار. به همين ترتيب، انواع مختلف يك محصول را نيز مى توان بر حسب ارزش، جمع زد. كاربرد چنين توابعى كه دادهها و ستادههاى آنها بر حسب ارزشُ اندازه گيرى شده است، معمولاً محدود است به استفاده از آنها در برخى برنامههایى مربوط بـا به

نظارت بر قيمتها
مشكالات اندازه گيرى و دستهبندى، مربوط است به حهار طبقهبندى كلى عوامل توليد، يعنى زمين، كار، سرمايه و مديريت. اين مسائل در زير بر رسى مى شوند.

زميـن :
براى غلبه بر دشوارى هاى مربوط بَ دستهبندى و اندازه گيرى نهاده زممين؛ چند ين راه
وجود دارد.

ـ ــنمونه مشاهدات را مى توان به مزارعى محلدود كرد كهكيفيت زمين در آنها همگن است. بنابراين بر حسب انواع مختلف زمين، مـل زمين صلدرصدل آبى و زمين صـلددرصد

ديمى، مى توان توابع توليل جداگانهأى برازش كردا rـگًاهی نهاده زمين را مى توان بر اين اساس كه آيا آبيارى شده است يا آبيارى نشده، همسان سازى (استاندارد) كرد. همهٔ زمين هاى يكك مزرعه را مى توان به معادلهایى يكديگر، در واحد سطح، تبد يل كرد. يعنى مشـخص كرد كه همه زمين ها معادل با چند آكر ' 'ابيارى شده يا چند Tكر آبيارى نشده است. براى اين كار بايل بازده نسبى هر دو نوع زمين رادر ناحيه مورد مطالعه، بدست آورد. شـ در آمل زمين را نيز مى توان براى همسانسازى گونههاى كيفيتى مختلف زمين، به كار بر2. در اين باره فرض مى شود كه اختالافات كيفيتى زمين به خوبى در درآمدهاى زمين بازتاب يافته است. درآمد زمينها، در هنده در دورهُ درازى در گَنشته، تثبيت شده بود و اكنون شايد بيانگر هيجِ گونه اختلافات كيفيتى نباشند. F F اجـاره زمين در ناحيه مورد مطالعه، شايل شاخصن بهترى، در مقايسه بادرآمد زمين، براى بيان كيفيت زمين باشد. اما دشوارى آنجاست كه رقم فرضى أجاره را نمى توان به آسانى از كشاورزان بدست آورد.
هـ قيمت بازارى زمين را نيز مى توان برا!ى بيان اختلافات كيفى زمينها به كار بر د. در

اين شاخص، فرض مىشود تغيير موقعيتهاى زمينها، اثرى بر قيمت آنها ندارد.
كــــار:
دز بررسى هاى تابع توليد، بايد به روشنى به خاطر داشت كه براى تخمين، بايد مقدار كار واقعاً استفاده شده رااندازهگرفت و نه مقداركل كار مو جود را. همه انواع كار انسانى، مثل كار مردان، زنان و بجههاه، بايد به معادل كار روزانه يا ساعتى مرد، تبد يل شو د. براي اين كارك از اختلاف نرخهاى دستمزد آنها، در ناحيه مورد بردسى، أستفاده مىشود. درباره انواع كار

 كيفيت كار خانوادگى كارگر، يديد آورد. براى تصشيح اختلافات كيفيتى كار خانوادگى، به طور اختيارى مى توان نرخهاى دستمزد فرضى براى اعضاى مختلف خانو اده به كـار بـرد.
 به عنوان يكك متغير نهادها كار گاو نر نيز در بيشتر توابع توليد كشاورزى، بويزه در هند، يكك نهاده مهم ديگر است. بهتر است اين نهاده را به عنوان يك متغير جداگانهایى به شمار بياوريم. و آن را بـه صورت تعداد روزها يا ساعتهاى كار گروهى گاوهاى نر ، اندازه گيرى كنيم. در اين باره اختلافات كيفيتى راگًاهى مى توان با تصحيح مقدار اين نهاده از طريق مقدار جيره غذايى حيو انات، توضيح داد. ارزش بازارى يكى گروه گاو نر، حتى مىتواند تقريب بهترى برایى كيفيت Tنها باشد.
همواره بهتر است برایى مزارع داراى گاو نر و مزارع داراى تراكتور، توابـع تـوليد
جدا گانهاى برازش شود.

دراين باره، معمولاً مسأله اندازه گيرى و دستهبندى، دشوارتر است. معمولاً برخـى
 نهادههاى سر مايهاى مختلف، در مطالعات موردیى كشاورزى، ممكن است نتايج مطلوبى بـى دست ندهد. مثلا" به دست آوردن اين نتيجه كه براى سرمايه، MC = MR است، مى تواند

 را بايد به عنوان يك نهاده
 اين قاعده، منجر به توابع توليدى مى شود كه برايى استنتاج نتايج معتبر، به منظور استفاده در سياستگذارى، مفيدترند.

در ميان نهادهها، اندازه گيرى مديريت، در يكك تابع توليدكشاورزىى، دشوارتر از از همه

 گرفته شده است، در زير معرفى مىینيم.

ا_شاخصمديريت:

شاخصى از ويزگِيهاى مديريت، براى مديران نمونهانى، تهيه مى شود و به عنوان يك
 الف) شاخص مديريت، ممكن است تواناييهاى مديريتى (بكار گر فته شده يا بكار
 كه براى تابع توليد لازم است.

> ب) وجود ييشداوريهاى ذهنى در ساختن هنين شاخصها.

ج) شاخصى از اين دست، ممكن است ميان دانش و مـنطق كـارفرمايانه'، تـفاوتى

[^18]「-_روشباقیماندهای'
بر اساس اين روش، باقى ماندههاى ميان مقادير واقعى و مقادير تخمين خوردهُ متغير

 گريليشيز سرمايه وجود داشته باشُد، حذف نهاده مديريت مى تواند منجر بـه تــخمين كـــتر از حــِـِ

 عملكردشان به عنوان مدير، تا حدود مناسبى همگورن و همانند هستند.
 حداقل باشد. ج) استفاده از روش مناسبى برای اندازه گيريها نهاده در مديريت و واردكردن آنذ در

تابع تولبد.
المازهميرى و دستهبندى ستادهـا
بيشتر كشاورزان، اغلب بيش از يكك محصول توليد مىكنند و حتتى يكـ مسحصول ممكن است داراى كيفيت و درجههاى گوناگونى باشد. معمولاً، دشوار است كه برای هر در درجه
 درمى يابد كه استفاده از مجموع ارزش ستاده، مناسبتر است. در اين صورت، به طور ضم فرض مى شود كه محصصولات با مـ محاسبه شده، محصو لات مشتركي

1. Residual Approach
2. Griliches
r. Joint products . وتتى از يك فرآيند توليد، الزامًا دو يا جند محصول بدست مىى آيد، آنها را

1- بهتر است تاحد ممكن، توابع توليد جداگانهای براى محصولات مـختلف و حتى
براى درجههاى مختلف هر محصول، برازش شود.
Y-اگر بايد يكك تابع توليدكشاورزیى كلى تخمين زده شود، بهتر است نمونه مطالعاتى به مزارعى كه در آنها، محصولات مـختلف تقريباً با نسبتهاى يكسـانى تـى تـوليد مـى شـوند، محدود گردد.

س-
مطالعات مربوط به تابع توليد را تنها زمانى مى توان به سوى دستيايبى اهداف تصريح

 كلي دادههاى آز مايشى و دادههاى غير آزمايشى تقسيم كرد. دادهاهی آزمايشى

دادههاى آز مـايشى، در رشـته كشـاورزى، بـيشتر بـه وسـيله كـارشناسان زراعـى، خاككشناسان، حـيوانشـناسان، و مـهندسين كشــاورزى فـراهـم مـى آيد. بـنابابايـن، ايـن دانش پ夫وهان، مـجمو عه ارزشمندى از دادههایى سو دمند را فراهم مى آورند كه اگگر در دسترس اقتصاددانان كشاورزى باشد، از آنها به گونهاى مفيد در مـطالعه رفـتار اقـتصادى اسـتفاده مى شود. اين دادهها شامل : (الف) دادههاى مقطعى، (ب) دادههاى سرى زمـانى، يـا (ج) سريهاى زمانى از دادههای مقطعى هستند. دادههاى آز ما يشى به دليل دقت طرح آزمايشى، گزارش نويسى و كنترل برخى نهادهها در سطح مورد نظر براى بڭزوهشگر، بسيار مفيد هستند. اما يكك آزمايش معمو لاً بدون دخالت يكك اقتصاددان كشاورزى برنامهريزى مى شود و مقادير مـختلف نهادهها يى كه در آز مايش به كار رفتهانده ممكن است آنقدر زياد متفاوت نباشل كه بتوان آنها را به عنوان داده در تابع
 Tامارهاى Tازمايشى مربوط به كود در هندوستان، برایى برازش يكـك تابع واكنش، نـا كــافى تشخيص داده شده است. هدفى كه يكك زيستشناس در يكى آزمايش دنبال مىكند، ممكن است كاملاً متفاوت با هدفى باشد كه يكى اقتصاددان در كاربرد دادهماى آزمايشى مو جود،

[^19]

 متخصصين رشتههاى گونا گون علمى را عملى سازند. دادههاى غير آزمايشى
 دادهها شامل (الف) دادههاى سريهاى زمانى)، (ب) دادههاى مقطعى، و (ج) سريهاى زمانى دادههاي مقطعى، مى مباشد.

 بدست مىدهند.
گاهى نيز سرى زمانى دادههاى مقطعى در دسترس است.
 اـ استفاده از دادههايى كه قبلاً به منظور ديگُرى و وبه وسيله افراد يـا ســاز مانههاى ديگرى، گرد آورى شده است.

[^20]
 محدودهٔ مورد مطالعه را فرامث مى آورد.

 برخى از عوامل مؤثر بر متغيرهاى وابسته را، به خاطر طبيعت كيفى شان، نمى توان اندازه گيرى

شرايط دادههاى غيرآزمايشى

ا_مناسب بودن دادهها براي تابع توليدموردمطالعه

 مربوط، آمارهاى ثبت شدهاى وجود نداشته باشدل، يا آمارها مربو

 جدىتر و شديدتر از دادههاى حاصل از يزوه

ץ_داددههابايد در بركيرندهٔدامنه مناسبي از منحنى(روية) توليدباشند

 زيردامنهها، تعداد نسبتاً برابرى مشاهده فراهم شودذ در مطالعات ميدانى، اين كار نسبتاً سادهتر

پّدادهمهاى همعَن وتركيب نشده
ناهمغونى و تركيب (جمعبستن) دادهها منجر به تخمينهاى ناي نامعتبر مى مشود. بنابراين، دادهها بايد، تا حدى كه منابع در دسترس ثيثوهشگگر اجازه مىدهند، همگخن و تركيب نشده باشند.

†الـمبناى اندازهكيرى دادهها

.مععقول اين است كه آمار مربوط، به نهادهها و ستادههاى مـختلف بر اسـاس مـقدار

 بنابراين استفاده بيشترى دارند.

ץ-

 آن بيردازيم.
تشخيص ، روشى است براى تعيين اين كه آيا ضرايب تخمين خورده، واقعاً هــمان
 تركيب (جمعزدن) دادههاى مربوط به افراد، مربوط به كالاهاها، مربوط به دوريه

\author{

1. Identification
}
2. Aggregation
3. Multicollinearity

مشخص كردن اثر مستقل هر كدام از آنها بر متغير وابسته، دشوار است. براى جزئيات بيشتر دربارئ مسائل تشخيص و تركيب، خواننده مى تواند به كتابهاى درسى اقتصاد سنجىى مراجعه كند. اما در اينجا مسأله هم خططى مركب را با به تفصيل بر رسى مى كنيّ.

> همخطى مركب

هرگاه يك يا چیند زوج متغير توضيحى، آنجّنان همبسته باشند كه تغييراتشان تقريباً

 هم خطى مركب عموماً پيامدهان زير را را دارد :
 شده باشد، ضرايب تخمين، نامعين داده مىشوند و خطاهأى معيار اين تــخمينها بـينهايت بزر ركَ خواهد شد.
萑

 همديگر در طول زمان و وجو دو مقادير با وقفه برخی از متغير هاى توضيحى، به عنوان متغير مستقل جدا گانهانى در مدل.

آزمون مســألـــــه

چندين آزمون برای شناخت مسأله هم خطى مركب وجود دارده بر برخى از آزمونهايى كه بيشتر به كار رفتهاند را در اين جا به گونهاي خلاصه مى آوريم :
|-آزمون كلين「٪
اين آزمون، يك محاسبه ساده است كه به خاطر سادگى|ش، در گَششته، عموماً مورد

استفاده پثزُوهشگرانگَ گنا گون بوده است. الل آر. كلين' تنها وقتى وجود همخطى مركب را به عنوان يك مشكل مى پذ ير دكه :

$$
\begin{equation*}
r_{x, x,}^{2} \geq R_{y \cdot x_{1} x_{2} \ldots x_{l}}^{2}, \quad i \neq j \tag{1-r}
\end{equation*}
$$

 ض R^{2}

ץ_قاعدهتجربى:
يك روش بسيار سادهاى كه در بسيارى از مطاللات گذشته مور د استفاده قرار گر فته
است، اين است كه همخطى مركب را خطرناك مى ششناسلـ، تنها اگر :

$$
\begin{equation*}
r_{x_{i} \cdot x_{j}} \geq 0.80, \quad i \neq j \tag{Y-Y}
\end{equation*}
$$

اين روش، تنها دارایى سادگى عملى است و كلاً آزمون خوبى نيست. تـيل 「

 توجه به اثرشان بر ضرايب منفر د، خطاهاى معيار، و زيانبخش تعيين مى شوند.

1. L.R.Klein
2. Theil
3. Coefficient of multiple determination
4. Frisch's Confluence Analysis

الف) آزمون خىدو (X2) براى بردسى وجود و شدت همخطى مركب. فرضيهاى كه آزمون

$$
\text { : كه در اين جا } r_{x i x j}=0(i \neq j) \text { و } r_{x i x j}=1 ،(i=1)
$$

$x^{* 2}=-\left[m-1-\frac{1}{6}(2 k+5)\right] \ln \left[\begin{array}{l}\text { value of the standardized } \\ \text { determinant }\end{array}\right]$
كه در آن، mحجم نمونه است و k تعداد متغيرهاى توضيحى، و درجه آزادى مساوى ، $\frac{1}{2} k(k-1)$
Standardized determinant $=\left[\begin{array}{cccc}r_{x_{1} x_{1}} & r_{x_{1} x_{2}} & \ldots & r_{\cdot x_{1} \cdot r_{k}} \\ r_{x_{2} x_{1}} & r_{x_{2} r_{2}} & \ldots & r_{x_{2} \cdot x_{k}} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ r_{x_{m} x_{1}} & r_{x_{m} x_{2}} & \ldots & r_{x_{m} \cdot x_{k}}\end{array}\right]$
اگر ار

 F زير انجام مى شود تا اهميت آنها بررسى شود :

$$
F^{*}=\frac{\left(R_{x_{1}, x_{1} x_{2} \ldots x_{t-1} x_{t+1}}^{2} \ldots x_{k}\right) /(k-1)}{\left(1-R_{x_{t}, x_{1} x_{2}}^{2} \ldots x_{t-1} x_{t+1} \ldots x_{k}\right) /(m-k)}
$$

[^21]ارزش F در يك سطح احتمال بذيرفته شده را با درجهماى آزادى . $U_{2}=m-k$ مى بذيريم كه متغير ${ }^{\text {I }}$ دارایى هم خططى مركب است. (ج) آزمون t براى شناختن الگوى هـمخطـى مـركـي

 زير بررسى مى شود :

$$
t^{*}=\frac{\left(r_{1}, x_{l}, x_{1} x_{2} \ldots x_{l-1} x_{i+1}, \ldots x_{l-1} x_{l+1} \ldots x_{k}\right) / \sqrt{m-k}}{\sqrt{ }\left(1-r_{x, x_{l}, x_{1}, x_{2}}^{2} \ldots x_{1-1} x_{l+1} \ldots x_{l-1} x_{l+1} \ldots x_{k}\right)}
$$

اگر يذير فته شده، مىباشد : آنگاه

راه حل مسأله

جند راه حل برایى مسأله ممخطى مركب در زير آورده شدهاند : ا-اگر همخطى مركب جدى نيست، مى توان بان با آن مداراكرد.

آنها را از معادله حذف كرد.
 (الف) مىتوان

1. Durbin
2. Mixed Estimation Technique
3. H.Theil
4. A.S.Goldberger

> هـ افزايش حجم نمونه باگرد آورى مشاهدات بيشتر.
 توزيع وتفهاى.
V- وارد كردن معادلات ديگرى در مدل اقتصادى، بر اساس تئورى. ^ــ استفاده از روش (امؤلفههاى اصلى)".'

$$
\begin{aligned}
& \text { r- } \\
& \text { ضرايب مدل اقتصادى را مى توان با استفاده از روشـهاى تــخمين تككمـعادلهاى و } \\
& \text { روشهاى معادلات همزمان، تخمين زد. اين روشها در زير معرفى مىشوند. } \\
& \text { روشهاى تخمين تكـمعادلهاى「 رو }
\end{aligned}
$$

اين روشها برای تخمين يكك معادله؛ در هر بار، بكار مىروند. مهمترين آنها عبار تند

1- حداقل مربعات كلاسيك؛، كه بعنوان روش حداقل مربعات معمولى ِ نيز نُناخته
شده است.
r- روشِ شكلِ خلاصه شده، كه روش حداقل مربعات غـيرمستقيم † نـيز خــوانــنـه مىشود.
r-روش حداقل مربعات دومرحلهاى. .
F- روش حداكثر راستنمايى با اطلاعات محدود

روشهاى معادلات همزمان
اين دوشها برایى تخمين يكجاى ضرايب همه مـعادلات بكـار مـى عمومى تر تخمين دراينباره عبار تند از :

1. Principal Components
2. Ordinary Least Squares Method
3. Single Equation Estimation Techniques
4. Indirect Least Squares Technique
5. Two - stage Least Squares Method
6. Limited Information Maximum Likelihood Method
7. Mixed Estimation
8. Simultaneous Equation Techniques

عمومى تر تخمين دراينباره عبارتند از :
1- روش حداقل مربعات سهمرحلهاى

انتخاب نهايى يكك روش خاص تخمين، بسـتگى بـه پــنـد ين مسأله دارد، مســائلى
همحون :
1-طبيعت رابطه و شرط تشخيص آن

داراى ويزگيهاى ناتورى، سازگارى، كارايى وايى و جامعيت).

$$
\begin{aligned}
& \text { سياستگذارى و بيشّبينى. } \\
& \text { F F أسادگى روش. }
\end{aligned}
$$

 جزئيات بيشتر مى تواند به كتابهاى درسى اقتصادسنجى مراجعه كند.

「-

 توضيح آنها مى پر دازيم.

ملاكهاى اقتصادى

[^22]2. Full Information Maximum Likelihood Techniques

به مقياس. هرگاه تخمين هاى بِارامترها با علامتها و اندازهمايى كه تئورى اقتصادى در نظر
 تلقى كرد.
ملاكهاى Tآمارى
ملا كهاى Tآمارى براى آزمون قابليت اعتماد Tمارى تتخمين هاى پارامترها طـراحـى شدهاند. ملاكهايى كه بيش از همه به كار مىروند، عبار تند از : خطاهاى معيار تخمينها و اري ضريب تعيين جندگانه. از آنجاكه تحمينهاى تابع توليد از نمونهها، استتاج مى شورند، نظريه نمونه گيرى آمار، آزمونهاى سودمندى ارائه مىكند تادرستى نمونهها تحقيق شود. در اين جا بايد ياد آورى كرد كـه مـلا كـهاى آمـارى بـى كمكككنده مىباشند، اما آنها در مقايسه با ملا كهاى نظرى اقتصادي از هيش تعيين شده، داراى اوى درجه دوم اهميت هستند. مشالً تخمين هاى داراى علامت غلط بايد كنار گذاشته شوند، حتى
 آنها را از نظر آمارى معنىيار بسازد.

ملاكهاى اقتصادسنجى

اينها آزمونهاث مرتبه دومى هستند براى تعيين قابليت اعتماد ملا كهاى آمارى به كار
 ناتورى، سازگارىى، كارآيى و جامعيت هستند يا نه. بنابراين، هدف ملا كهاى اقتصادسنجى، تعيين صحت يا نقض فروض اقتصاد سنجى انگًاشته شده، مىباشد. اگگ فروض دوش اقتصادسنجى بكار گرفته شده، بر آورده نشوند، آنگاه تخمينهایى پارامترها تورش دار مىشوند، يا اين كه ملا كهاى آمارى اعتبار خو دشان را الز دست مىدهند و ديگر به آنها نمىتوان در تعيين معنىدار بودن آمارىى، اعتماد كرد.

هدف تخمين يكك مدل اقتصادى خاص يا يكك تابع توليد، بـدست آوردن مـقادير گوناگون اقتصادى است. اين گونه مقادير دربرگيرنده توليد نهايى و متوسط، كشش توليد و بازدههاى نسبت به مقياس، توليد همسانها و نرخهاى جانشينى فنى، خطوط همشيب، مسـير

توسعه؛ معادلات خط مرزى ' و كشُ جانشينى مىباشند. اين معادير قبلاً در فصل Y به تفصيل بررسى شدند. اين مقادير، براى فهم اقتصادى اطلاعات داده ـ ستادهاى و شكـل ريـاضى برازش شده توابع توليد، اهميت اساسى دارند. اعتبار استنتاجها و نتايجى كه با استفاده از يكى مدل اقتصادى درباره محيط اقتصادى مورد بردسى گرفته مىشوند، بستگى به اين مـقادير دارد. بنابراين، اين مقادير بعنوان ابزار هايى برايى دست يابى به اهداف موردنظر، عمل مىكينـد.

تمرين:

طور خلاصه توضيح دهيد.
 توليد يارى مىدهند، بحث كنيد. در عمل، تا حه حد به (اسادگى محاسباتى)" دستيابى بيدا شده

است؟
ץ-س دشواريهاى اندازه گيرى و دستهبندى مربوط نهادههاى زمين، كار، سـر مايه و
مديريت كدامند؟ چحگونه مى توان بر اين دشواريها چیيره گشت؟ F- F

كدامند؟ كدام را ترجيح مىدهيد و جه موقع؟
ץ - ه آدقت در جمع آورى دادهها، بسيار مهم تر از شكل مدل اقتصادى است)، درباره
اين جمله بحث كنيد.
س-7 دشواريهاى مهم تخمين تكثمعادلهاى كدامند؟ كدام يك از آنها در مطالعات
مربوط به تابع توليد بيستر عموميت دارد؟
Vدرباره روشهاى مناسب حل اين مشكل، بحث كنيد.

1. Ridge line equations

منابع براى مطالههي يشتر

Griliches, Zvi, 'Specification Bias in Estimates of Production Functions", Journal of Farm Economics, 39(1), 1957, pp 8-20.
Heady, E.O. and J.L. Dillon, Agricultural Production Functions, Iowa State University Press, Ames, Iowa, 1961, Chs. 5 and 6.
Koutsoyiannis, A., Theory of Econometrics, 2nd ed., MacMillan, London, 1977, Cl. 2.
Perrin, R.K., "The Value of Information and the Value of Theoretical Models in Crop Response Research", American Journal of Agricultural Economics, 58(1), 1976, pp 54-61.
Rao, V.M., "A Note on the Practice of Standardization of Land in Farm Production Function Studies", Indian Journal of Agricultural Economics, 31(2), 1976, pp 63-65.

فصل حهارم

اشكال مختلفتوابعتوليد

اشكال مختلف توابع توليد، خصوصاً در ارتباط با شكلهاى رياضى و نمودارى آنها در اين فصل بطور مفصل مورد بحث قرار مىگيرند. چجگونگى استخراج توليد متو سطط، توليد
 مرزى و كشش جانثينى براى هر تابع در اين فصل توضيح داده شده است.

٪-1 ا تابع توليد خطى'

 يك؛، دو و nنهاده متغير به ترتيب عبارتند از :

$$
\begin{gather*}
y=a_{0}+a_{1} x_{1} \tag{1-F}\\
y=a_{0}+a_{1} x_{1}+a_{2} x_{2} \tag{r-Y}\\
y=a_{0}+\sum_{i=1}^{n} a_{l} x_{i}
\end{gather*}
$$

نمودار رابطه ((- ا) در شكل (ץ-1) نشان داده شدهاست، كه

[^23]شيب تابع توليد است. با وجود اينكه تابع توليد خطى، يك تابع ساده است ولى اين تابع در در

 باز دهماى ناشى از مقياس آن نزولى است، يعنى : $\Sigma\left\{\left(\frac{x_{i}}{y}\right)\left(\frac{\partial y}{\partial x_{i}}\right)\right\}<1$
$\frac{\partial^{2} y}{\partial x_{i}^{2}}=0$
در اين تابع اين موارد بدين صورت مىىاشند :
 مهم تابع توليد خطى را در اينجا بطرر خلاصه مورد بحث قرار مىدهيمر.

[^24]توليدمتوسط' (AP)

$$
\begin{equation*}
A P_{1}=\frac{a_{1} x_{1}}{x_{1}}=a_{1} \tag{F-F}
\end{equation*}
$$

بدين ترتيب 1 بدون توجه به سطح نهاده مورد استفاده يكك مقدار ثابت است.

توليدنهانىى
توليد نهائى نسبت به نهاده

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{1}
$$

 تمامى سطوح نهاده مورد استفاده، $A P_{1}=M P_{1}$ است. اين خاصيت براحـتى مـى توانـد بـه

منحنى توليد همسان

$$
x_{1}=\frac{y^{0}-a_{0}}{a_{1}}-\frac{a_{2}}{a_{1}} x_{2}
$$

حال اجازه بدهيد به جاى (7-チ) را مى توان اين گونه نوشت :

$$
\begin{equation*}
x_{1}=b_{0}-b_{1} x_{2} \tag{V-F}
\end{equation*}
$$

نمايش نمودارى اين حنين معادله|ی براى منحنى توليد همسـان در شكل (Y-Y) ارائه

اما تجربه عمو مى، نشان مىدهد كه يك حثنين رابطه جانشينى بين نهادهماكاماملاً كمياب
 با هم جمع كنيم و با آن بعنوان يكت نهاده يگانه، رفتار كنيم.

از رابطه ((-7) ، مى توان RTS 21 را بدست آورد، بطورى كه :

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{2}}{a_{1}}
$$

 ثابت است، يعنى يك نرخ ثابت جانثين همديخر مى شوند.

خطوط شيب همسان

$$
\begin{aligned}
& \text { وقتى معادله خط شيب همسان عبار تست از } \\
&-\frac{d x_{1}}{d x_{2}}=c
\end{aligned}
$$

كه cمقدار ثابت، مثُبت و واقعى است. اين مورد را هون خطوط شيب همسان تعريف نشدهاند، نمى توان حل نمود.

در آنجايى كه خطوط مرزى شيب همسان تعر يف نشدهاند، خطوط مرزى نيز براى اين تابع توليد (خطى) بدون تعريف مىباشند.

كشش توليد (Ep)

$$
\begin{align*}
& \text { كشش توليد } E P_{i} \text { نسبت به هر نهاده } \\
& E_{p_{i}}=\frac{M P_{i}}{A P_{i}}=\frac{a_{i}}{a_{i}}=1 \tag{9-f}
\end{align*}
$$

اين موضوع دلالت بر اين دارد كه يك درصد افزايش در در سطغْ نهاده
 دوبرابر گرديدن ستاده مى شود. وقتى تمامى نهادههاى ديگُر در سطح معينى كه بايد باشند، ثابت بمانند.

كشش جانشينى (Es)

$$
E S_{j i}=\frac{\% \Delta\left(x_{i} / x_{j}\right)}{\% \Delta\left(-d x_{i} / d x_{j}\right)} \quad: \quad \text { بطورى كه مى توان نوشت }
$$

|ما برای يكك تابع توليد خطى،

همسان داده شده، 0 م معينى در ديگر.

〒-

عبارتند از :

$$
y=a_{0}+a_{1} x_{1}+a_{11} x_{1}^{2}
$$

1. Quadratic production function

 حد اكثر ستاده yدر نقطه

توليدمتوسط (AP)
X بطور مختصر با توجه به بخش واكنش تابع توليد، توليد متوسط نسبت به نهاد

[^25]2. Product Transformation curves
3. Mirror curve

بصورت نمودارى، $A P_{1}$ مربوط به تابع توليد درجه دوم با 0 0 a a_{11} شر شكل (F-F)؛

 $a_{11}<0$ و $a_{1}>0=\frac{-a_{1}}{a_{11}}$ است، بنابراين سطح نهاده 1 در جائيكه $A P_{1}$ محور 1 را قطع مى كند، مثبت است.

توليد نهائى (MP)

بطورى كه :

$$
\begin{equation*}
M P_{1}=\frac{d y}{d x_{1}}=a_{1}+2 a_{11} x_{1} \tag{-}
\end{equation*}
$$

 كه $x_{1}=-\frac{a_{1}}{2 a_{11}}$

$$
\text { كشش توليد (}{ }^{\text {(}}
$$

كشش توليد نسبت به نهاده X يعنى Ep را مى توان بدست آورد، بطورى كه

$$
E_{p_{1}}=\frac{M P_{1}}{A P_{1}}=\frac{a_{1}+2 a_{11} x_{1}}{a_{1}+a_{11} x_{1}}
$$

 با افزايش 1 كاهش مى يابد.

منحنى توليد همسان
معادله منحنى توليد همسان را مى توان از تابع درجه دوم (F-| ال) داده شده بـا دو

نهاده متغير، استخراج نمود.

$$
\begin{equation*}
x_{1}=\frac{-\left(a_{1}+a_{12} x_{2}\right) \pm\left[\left(a_{1}+a_{12} x_{2}\right)^{2}-4 a_{11}\left(a_{0}+a_{2} x_{2}+a_{22} x_{2}^{2}-y^{0}\right)\right]^{3}}{2 a_{11}} \tag{17-F}
\end{equation*}
$$

منحنى هاى توليد همسان براى يك تاب a $a_{12}>0$
 ا- منحنى هاى توليد همسان با محور نهاده

 مقدار
 ستاده براى تركيب واحد، نهادههاى منحنى توليد همسان نشان داده شده است. اين نقطه به نقطه |(فون ليبيگک)|' معروف اس است.
 برايى تابع توليد درجه دوم

[^26]نرخ جانشينى فنى (RTS)
نرخ جانشينى فنى نهاده

$$
\begin{equation*}
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{2}+2 a_{22} x_{2}+a_{12} x_{1}}{a_{1}+2 a_{11} x_{1}+a_{12} x_{2}} \tag{IV-F}
\end{equation*}
$$

بنابراين، $R T S_{21}$ ، تابعى از $x_{1} x_{1}$ ه همخنين سطح هر دو نهاده مىباشد. معادله خطوط شيب همسان

به منظور دستيابى به معادله خطوط شيب همسان برايى دو نهاده تابع توليد درجه دوم
 x

$$
x_{1}=\frac{a_{1} c-a_{2}}{-2 a_{11} c+a_{12}}+\frac{\left(c a_{12}-2 a_{22}\right) x_{2}}{-2 a_{11} c+a_{12}}
$$

رابطه (IN-F) يكك معادله خطى است. بعلاوه خطوط شيب همسان از مركز مختصات
نمى توانند عبور كنند؛ به استئناء اين موارد :

$$
\begin{equation*}
\frac{a_{1} c-a_{2}}{-2 a_{11} c+a_{12}}=0 \quad \text { ᄂ } \quad c=\frac{a_{2}}{a_{1}} \tag{19-F}
\end{equation*}
$$

بدين ترتيب، تنها آن خط شُيب همسان از مركز مـختصات عبور مىكند، كـه خـط مقياس باشد؛ هون آن يك خطط مستقيم است.

خطـوط مـــرزى
خط مرزى مربوط به معادله خطوط شيب همسان رابطه (IN-F) را بوسيله جـانشين نمودن c=0 در رابطه مذكور مى توان بيداكرد، يعنى :

$$
x_{1}=-\frac{a_{2}}{a_{12}}-\frac{2 a_{22}}{a_{12}} x_{2}
$$

اين خط مرزیى محور
موضوع دلالت بر مثبت بودن سطع نهاده x دارد. بطور مشابّه ديگر خط مرزى مربوط به

 دريابد. دو خطط مرزى ممكن، برای توليد تابع درجه دوم در شكل (F F (7) نشان داده شده است. خو اننده عقيده خود را درباره رفتار خطوط مرزى وقتى نمايد.

شكلى (母-7) : خطوط مرزى مربوط به دو نهاده تابع توليد درجه دوم

اين تابع تلفيقى بين تابع كاب ـ دا كالاس و تابع درجه دوم است. تابع ريشه دوم از از
محدوديتهاى مانند تركيب ثابت نهاده براى توليد سطوح مختلف ستاده در تابع توليد كاب -

 ملاحظه میگردد كه منحنى توليدكل 1 كا
 اشكال جبرى تابع توليد ريشه دوم با يكك، دو و nنهاده متغير به ترتيب عبار تند از ان :

$$
Y\left\{\begin{array}{c}
y=a_{0}+a_{1} x_{1}^{5}+a_{11} x_{1} \\
y=a_{0}+a_{1} x_{i}^{5}+a_{2} x_{2}^{5}+a_{11} x_{1}+a_{22} x_{2}+a_{12} x_{1}^{5} x_{2}^{5}(Y Y-\mathcal{Y}) \\
y=a_{0}+\sum_{i} a_{i} x_{i}^{5}+\sum_{l} a_{i 1} x_{i} \\
+\sum_{i} \sum_{j} a_{U} x_{i}^{5} x_{j}^{5}, \quad i, j=1,2, \ldots, n(i<j) \quad(Y \mu-F) \\
M
\end{array}\right.
$$

توليد متوسط (AP)
از قسمت وا كنش تابع توليد رابطه (Y) (Y) ، توليد متوسط نسبت به نهاده AP $A P_{1}$

$$
\begin{equation*}
A P_{1}=\frac{a_{1} x_{1}^{5}+a_{11} x_{1}}{x_{1}}=a_{11}+a_{1} x_{1}^{-.5} \tag{YF-F}
\end{equation*}
$$

 كند. شايد توجه داشتيد كه تحت شرايط طبيعى، انتظار مىرود كه . $a_{1}>0$

MP توليد نهائى

از رابطه (Y) (Y) ، توليد نهايى نسبت به نهاده

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{11}+.5 a_{1} x_{1}^{-.5}
$$

 a $a_{1>0}$ نزولى چشنانكه سطح نهاده افزايش مى يابد، كاهش مى يابد. برایى منفى شدن توليد تون نهايى مقادير
 مىنمايد.
حدا كثر ستاده كل مربوط به اين نقطه (M) بر روى منحنى توليد كل در جائى است كه توليد نهائى صفر است، بنابراين :

$$
M P_{1}=.5 a_{1 x_{1}}^{-.5}+a_{11}=0
$$

$$
\begin{equation*}
x_{1}=.25 a_{1}^{2} a_{11}^{-2} \tag{7}
\end{equation*}
$$

x ، سطح نهاده مورد استفاده است در جائيكه محصول در حدا كثر سـطح سـتاده
مى باشد.
منحنىهاى توليد همسان
معادله منحنى توليد همسان مربوط به تابع توليد (Y (Y-F) داده شده است بوسيله :

$$
\begin{equation*}
x_{1}=\left[\frac{-\left(a_{1}+a_{12} x_{2}^{5}\right) \pm \sqrt{\left.\left\{a_{1}+a_{12} x_{2}^{5}\right)^{2}+4 a_{11}\left(y^{0}-a_{0}-a_{2} x_{2}^{5}-a_{22} x_{2}\right)\right\}}}{2 a_{11}}\right]^{2} \tag{YV-F}
\end{equation*}
$$

 نزديك به مركز مختصات محورهاى نهاده را در فضاى نهادهاى بطورى كه در شكل (Y-F) نــان داده شده است قطع مىكنند.

RTS نرخ جانشينى فنى
نرخ جانشينى فنى بوسيله مشتق مرتبه اول
كه

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{22}+.5 a_{2} x_{2}^{-.5}+.5 a_{12} x_{1}^{.5} x_{2}^{-.5}}{a_{11}+.5 a_{1} x_{1}^{-.5}+.5 a_{\mathrm{I} 2} x_{1}^{-.5} x_{2}^{.5}}
$$

خطوط شيب همسان
معادله خط شيب همسان را برایى اين نوع از تـابع تـوليد مـى توان بـو بـو سيله مسـاوى

$$
\text { قراردادن RTS } 21 \text { در رابطه (Y^-Y) با مقدار ثابت Cاستخراج نمود. بدين ترتيب }
$$

$$
x_{1}=\left[\frac{c a_{11}-a_{21}-.5 a_{2} x_{2}^{-.5} \pm \sqrt{ }\left\{\left(a_{21}-c a_{11}+.5 a_{3} x_{2}^{-.5}\right)^{2}-2 a_{12} x_{2}^{-.5}\left(.5 c a_{2}+.5 c a_{13} x_{2}^{5}\right)\right\}}{a_{19} x_{2}^{-.5}}\right]^{2}\left(Y q_{-}-f\right)
$$

بنابراين خطوط شُيب همسان داده شله بوسيله رابطه (Y (Y - Y) براى اين نوع تابع توليد
 در سطح نهادهُ برابر به همديگر متصل مى گردند. همانند سطح حدا كثر ستاده چجنانكه در تابع
 باشيد كه اين شكل براى نوع مثبت اثر متقابل بين دو نهاده (مدنظر است. خطوط مسير توسعه نيز همين گونه، خميدهاند و نشانگر تغيير نسبت (Y F F F)

توسعه، معادلات خط مرزى ' وكشش جانشينى مى باشند. اين مقادير قبلاً در فصل r ب به تفصيل
 برازش شده توابع توليد، اهميت اساسى دارند. اعتبار استنتاجها و و نتايجى كه با با استفاده از يكت

تمرين:
ץ- ا نكات مهمى كه هنگام تصريح يك مدل اقتصادى بايد در نظر داشت، كدامند، بـ طور خلاصه توضيح دهيد.

 است؟

世
مديريت كدامند؟ هچگونه مى توان بر اين دشواريها هيره گشـت؟ رو f- F

كدامند؟ كدام را ترجيح مىدهيد و چها موقع؟
ץ-
اين جمله بحث كنيد.
ץ- 7 دشواريهاى مهم تخمين تكمععادلهاى كدامند؟ كدام يك از آنها در مطالعات مربوط به تابع توليد ييشتر عموميت دارد؟
ץدرباره روشهاى مناسب حل اين مشكل، بحث كنيد.

[^27]
منابع براى مطالعه بيشتر

Griliches, Zvi, "Specification Bias in Estimates of Production Functions", Journal of Farm Economics, 39(1), 1957, pp 8-20.
Heady, E.O. and J.L. Dillon, Agricultural Production Functions, Iowa State University Press, Ames, Iowa, 1961, Chs. 5 and 6.
Koutsoyiannis, A., Theory of Econometrics, 2nd ed., MacMillan, London, 1977, Ch. 2.
Perrin, R.K., "The Value of Information and the Value of Theoretical Models in Crop Response Research", American Journal of Agricultural Economics, 58(1), 1976, pp 54-61.
Rao, V.M., "A Note on the Practice of Standardization of Land in Farm Production Function Studies", Indian Journal of Agricultural Economics, 31(2), 1976, pp 63-65.

فصل جهارم

اشكال مختلفتوابع توليد

اشكال مختلف توابع توليد، خصوصاً در ارتباط با شكلهاى رياضى و نمودارى آنها در اين فصل بطور مفصل مورد بحث ترار مىگيرند. چچگونگى استخراج توليد متوسط، توليد
 مرزى و كشش جانشينى براى هر تابع در اين فصل توضيح داده شده است.

†- †-ا تابع توليد خطى

 يكن، دو و nنهاده متغير به ترتيب عبار تند از :

$$
\begin{gather*}
y=a_{0}+a_{1} x_{1} \tag{1-f}\\
y=a_{0}+a_{1} \cdot x_{1}+a_{2} \cdot x_{2} \tag{Y-F}\\
y=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}
\end{gather*}
$$

نمودار رابطه (F-1) در شكل (F-1) نشان داده شده است، كه

شيب تابع توليد است. با وجود اينكه تابع توليد خطى، يك تابع ساده است است ولى اين تابع در

 بازدهماى ناشى از مقياس آن نزولى است، يعنى : $\Sigma\left\{\left(\frac{x_{i}}{y}\right)\left(\frac{\partial y}{\partial x_{i}}\right)\right\}<1$
$\frac{\partial^{2} y}{\partial x_{i}^{2}}=0$
در اين تابع اين موارد بدين صورت مىباشند :

در اين تابع بازده نسبت به مقياس ثابت بيان شيان شده استا مهم تابع توليد خطى را در اينجا بطور خلاصه مورد بحث قرار مىدهيمي.

[^28](AP) (A ${ }^{\wedge}$

\[

$$
\begin{equation*}
A P_{1}=\frac{a_{1} x_{1}}{x_{1}}=a_{1} \tag{F-F}
\end{equation*}
$$

\]

بدين ترتيب AP بدون توجه به سطح نهاده مورد استفاده يك مقدار ثابت است.

توليد نهائىّ ${ }^{〔}$ (MP)
توليد نهائى نسبت به نهاده

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{1}
$$

 تمامى سطوح نهاده مورد استفاده، $A P_{1}=M P_{1}$ واست. اين خاصيت براحتـى مسىتوانــد بــ , $i=1,2, \ldots, n P_{i}=M P_{i}$

منحنى توليد همسان

چخنانجه مىدانيم، برایى رسم نمودار منحنى توليد همسان، دو نهاده لازم است. از از اين

$$
\begin{equation*}
x_{1}=\frac{y^{0}-a_{0}}{a_{1}}-\frac{a_{2}}{a_{1}} x_{2} \tag{7-F}
\end{equation*}
$$

حال اجازه بدهيد به جاى (

$$
\begin{equation*}
x_{1}=b_{0}-b_{1} x_{2} \tag{V-F}
\end{equation*}
$$

نمايش نمودارى اين چحنين معادلهاى براى منحنى توليد هـيــان در شكل (Y-Y) ارائه شده است، كه منحنى توليد همسان مربوط به تابع توليد خطى و داراى شاى شيب نزولى است. اين

اما تجربه عمومى، نشان مىدهد كه يك هينين رابطه جانشينى بين نهادهماكاماملاً كمياب
 با هم جمع كنيم و با آن بعنوان يك نهاده يگانه، رفتار كنيم. نرخ جانشينى فنى (RTS
از رابطه ((7-7) ، مىتوان RTS 1 رابدست آورد، بطورى كه :

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{2}}{a_{1}}
$$

بدين ترتيب، $R T S_{21}$ نرخ جانشينى فنى نهاده. ${ }^{2}$ براى x_{1} مى باشد كه مساوى با مقدار
ثابت است، يعنى يك نرخ ثابت جانُشين همديگر مى شوند.

خطوط شيب همسان
وقتى معادله خط شيب همسان عبارتست از :

$$
-\frac{d x_{1}}{d x_{2}}=c
$$

كه c مقدار ثابت؛ مثبت و واقعى است. اين مورد را حون خطوط شيب همسان تعريف
نشدهاند، نمىتوان حل نمود.

خطوطمرزى
در آنجايى كه خطوط مرزى شيب همسان تعريف نشدهاند، خطوط مرزى نيز براى اين تابع توليد (خطى) بدون تعريف مىباشند.

كشش توليد (Ep)
كشش توليد $E P_{i}$ نسبت به هر نهاده X_{i} برابر با واحد است، يعنى :

$$
\begin{equation*}
E_{p_{i}}=\frac{M P_{i}}{A P_{i}}=\frac{a_{i}}{a_{l}}=1 \tag{9-F}
\end{equation*}
$$

اين موضوع دلالت بر اين دارد كه يكك درصد افزايش در سطْ نهاده
 دوبرابر گرديدن ستاده مىشود. وقتى تمامى نهادههاى ديگُر در سطح معينى كه بايد باشند، ثابت بمانند.
كشش جانشينى (Es)

$$
E S_{j 1}=\frac{\% \Delta\left(x_{i} / x_{j}\right)}{\% \Delta\left(-d x_{i} / d x_{j}\right)} \quad: \quad \text { بطرىى كه مى توان نوشت. }
$$

|ما برای يكى تابع توليد خطى،

هسـان داده شده، 1 است. 1 بدين معنى كه تغييرات جزنى معينى در ويگر.

'

يك هند جملهاى درجه دوم، با اشكال جبرى يك؛، دو و n نهاده متغير به تـرتيب عبارتند از :

$$
y=a_{0}+a_{1} x_{1}+a_{11} x_{1}^{2}
$$

[^29]

 حدا كثt ستاده עدر نقطه هو مقدار كود بر محصولات كَشاوزى مى يردازنده بطور گستردامانى مورد استفاده قرار مىیدهند.

توليدمتوسط (AP)
بطور مختصر با توجه به بخش واكنش تابع توليد، توليد متوسط نسبت به نهاده

شكل (f-f) : توليد متوسط نهاده X X، استخراج شده از تابع توليد درجه دوم

1. Well-behaved quadratic production function

2. Product Transformation curves
3. Mirror curve
 نشان داده شده كه يك منحنى خطى نزولى يكنواخت است. اين تابع را بطور مثبت يا منفى هم
 $a_{11}<0, a_{1}>0$ است قطع مى $x_{1}=\frac{-a_{1}}{a_{11}}$ است، بنابراين سطح نهاده

توليد نهائى (MP)

بطورى كه :

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{1}+2 a_{11} x_{1}
$$

در حالت معمولى، وقتى كه نزولى يكنو اخت است، اما نرخ كاهش آن، دو برابر مىباشد. MP1 مىتواند هم نزولى و هم
 كهو $M P_{1}=-\frac{a_{1}}{2 a_{11}}$

كشش توليد (
كثش توليد نسبت به نهاده 1 يعنى X_{1} یا مى توان بدست آورد، بطورى كه

$$
\begin{equation*}
E_{p_{1}}=\frac{M P_{1}}{A P_{1}}=\frac{a_{1}+2 a_{11} x_{1}}{a_{1}+a_{11} x_{1}} \tag{10-F}
\end{equation*}
$$

 با افزايش x_{1} كاهش مىيابلد.

منحنى توليد همسان

معادله منحنى توليد همسان را مى توان از تابع درجه دوم (I F - F داده شده بـا دو

نهاده متغير، استخراج نمود.

$$
x_{1}=\frac{-\left(a_{1}+a_{12} x_{2}\right) \pm\left[\left(a_{1}+a_{12} x_{2}\right)^{2}-4 a_{11}\left(a_{0}+a_{2} x_{2}+a_{22} x_{2}^{2}-y^{0}\right)\right]^{3}}{2 a_{11}}
$$

 a $a_{12}>0$

ا- منحنى هاى توليد همسان با محور نها ناده مماس نيس انيتند.

 مقدار
 ستاده برای تركيب واحد، نهادههاى

شكل (براى تابع توليد درجه دوم

نرخ جانشينى فنى نهاده

$$
\begin{equation*}
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{2}+2 a_{22} x_{2}+a_{12} x_{1}}{a_{1}+2 a_{11} x_{1}+a_{12} x_{2}} \tag{1V-f}
\end{equation*}
$$

معادله خطوط شيب همسان
 رابطه ((II) ، رابطه (IV-F) را مساوى مقدار ثابت c
:

$$
x_{1}=\frac{a_{1} c-a_{2}}{-2 a_{11} c+a_{12}}+\frac{\left(c a_{12}-2 a_{22}\right) x_{2}}{-2 a_{11} c+a_{12}}
$$

رابطه ((1N-) يكك معادله خطى است. بعلاوه خطوط شيب همسان از مركز مختصات
نمى تواندل عبور كنند، به استثناء اين موارد :

$$
\begin{equation*}
\frac{a_{1} c-a_{2}}{-2 a_{11} c+a_{12}}=0 \quad \text { ي } \quad c=\frac{a_{2}}{a_{1}} \tag{19-f}
\end{equation*}
$$

بد ين ترتيب، تنها آن خط شيب همسان از مركز مختصات عبور مىكند، كـه خـط مقياس باشد؛ هون آل يك خط مستقيم است.
خطــوطمــرزى

خط مرزى مربوط به معادله خطوط شيب همسان رابطه (IN-F) را بوسيله جـانشين نمودن c=0 در رابطه مذكور می توان بيداكرده، يعنى :

$$
\begin{equation*}
x_{1}=-\frac{a_{2}}{a_{12}}-\frac{2 a_{22}}{a_{12}} x_{2} \tag{0}
\end{equation*}
$$

اين خط مرزى محور موضوع دلالت بر مثبت بودن سطح نهاده x دارد. بطور مشآبه ديگر خط مرزى مربوط به

 نمايد.

شكل (f-9) : خطوط مرزى مربوط به دو نهاده تابع توليد درجه دوم
'

محدوديتهاى مانند تركيب ثابت نهاده برايى توليد سطوح مختلف ستاده در تابع توليد كاب داگ大لاس و خطوط شيب همسان خطى، در تابع درجه دوم مبراست. اين تابع در تو توليد كل از از

 ملاحظه مىگردد كه منحنى توليد كل

$$
Y\left\{\begin{array}{c}
y=a_{0}+a_{1} x_{1}^{5}+a_{11} x_{1} \\
y=a_{0}+a_{1} x_{i}^{3}+a_{2} x_{2}^{5}+a_{11} x_{1}+a_{22} x_{2}+a_{12} x_{1}^{5} x_{2}^{5}(Y Y-F) \\
y=a_{0}+\sum_{i} a_{i} x_{i}^{5}+\sum_{l} a_{i l} x_{i} \\
+\sum_{1} \sum_{j} a_{U U} x_{i}^{5} x_{j}^{.5}, \quad i, j=1,2, \ldots, n(i<j) \quad(Y Y-\mathcal{Y}) \\
M
\end{array}\right.
$$

توليد متوسط (AP)
از قــمت وا كثش تابع توليـد رابطه (Y)-Y) ، توليد متو سط نسبت به نهاده را $A P_{1}$

$$
\begin{equation*}
A P_{1}=\frac{a_{1} x_{1}^{5}+a_{11} x_{1}}{x_{1}}=a_{11}+a_{1} x_{1}^{-.5} \tag{Yf-F}
\end{equation*}
$$

خواننده، اين معادله را براى تمرين شكل و و ماهيت آن مى تواند در يك يك نمي
 با $a_{1}>0$

MP توليد نهائى

از رابطه (Y|-Y) ، توليد نهايى نـبـت به نهاده X ${ }^{\text {(Y عبار تست از : }}$

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{11}+.5 a_{1 . x_{1}}^{-.5}
$$

 a باشد. بدين تر تر تيب، ممكن است $M{ }_{1>0}$
 نهاده به اندازه كافى بزرگك مىباشند. حخنانكه ستاده كل بعد از نقطه (M) شُ بروع به كـاهش مىنمايد.
حدا كثر ستاده كل مربوط به اين نقطه (M) بر زوى منحنى توليدكل در جائى استكه توليد نهائى صفر است، بنابراين :

$$
M P_{1}=.5 a_{1 x_{1}}^{-.5}+a_{11}=0
$$

$$
\begin{equation*}
x_{1}=.25 a_{1}^{2} a_{11}^{-2} \tag{r7-q}
\end{equation*}
$$

x x_{1}
مى باشد.
منحنى هاى توليد همسان
معادله منحنى توليد همسان مربوط به تابع توليد (YY-F) داده شده است بو سيله :

$$
\begin{equation*}
x_{1}=\left[\frac{\left.-\left(a_{1}+a_{12} x_{2}^{5}\right) \pm \sqrt{ }\left\{a_{1}+a_{12} x_{2}^{5}\right)^{2}+4 a_{11}\left(y^{0}-a_{0}-a_{2} x_{2}^{3}-a_{22} x_{2}\right)\right\}}{2 a_{11}}\right]^{2} \tag{FV-F}
\end{equation*}
$$

نقشه منحنى توليد همسان را مىتوان از رابطه (YV-F) استخراج نمود. منحنى هاى نزديكك به مركز مختصات محور هاى نهاده را در فضاى نهادهاى بطورى كه در شكل (Y-F) نشان داده شده است قطع مىكنند.

RTS نرخ جانشينى فنى
نرخ جانشينى فنى بوسيله مشتق مرتبه اول
كه :

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{22}+.5 a_{2} x_{2}^{-.5}+.5 a_{12} x_{1}^{.5} x_{2}^{-.5}}{a_{11}+.5 a_{1} x_{1}^{-.5}+.5 a_{12} x_{1}^{-.5} x_{2}^{.5}}
$$

خطوط شيب همسان
معادله خطط شيب همسان را براى اين نوع از تـابع تـوليد مـىتوان بـو سيله مسـاوى

$$
\text { قراردادن RTS } 21 \text { در رابطه (Y^-F) با مقدار ثابت cاستخراج نمود. بدين ترتيب }
$$

$$
x_{1}=\left[\frac{c a_{11}-a_{23}-.5 a_{2} x_{2}^{-.5} \pm \sqrt{ }\left\{\left(a_{21}-c a_{11}+.5 a_{1} x_{2}^{-.5}\right)^{2}-2 a_{12} x_{2}^{-.5}\left(.5 c a_{3}+.5 c a_{12} x_{2}^{.5}\right)\right\}}{a_{13} x_{2}^{-.5}}\right]^{2}(Y q-F)
$$

بنابراين خطوط شيب همسان داده شده بو سيله رابطه (Y (Y - Y) برای اين نوع تابع توليد از مركز مختصات عبور مىكند. خطوط شيب همسان غيرخطى بوده و در يك نقطه مشانـو

 باشيد كه اين شكل براى نوع مثبت اثر متقابل بين دو نهاده (مدنظر است. خطوط مسير توسعه نيز همين گونه، خميدهاند و نشانگر تغيير نسبت (Y- F)

نهادهها در مسير حداقل هزينه مربوط به مقادير مختلف ستاده مىبانشند.

خطوطمرزى
معادلات خطوط مرزى مربوط به منحنىهاى توليد همسان داده شده بو سيله رابـطه

آورد، كه عبار تست از :

$$
\frac{a_{22}+.5 a_{2} x_{2}^{-.5}+.5 a_{12} x_{1}^{.5} x_{2}^{-.5}}{a_{11}+.5 a_{1} x_{1}^{-.5}+.5 a_{12} x_{1}^{-.5} x_{2}^{.5}}=0
$$

$a_{22}+.5 a_{2} x_{2}^{-.5}+.5 a_{12} x_{1}^{.5} x_{2}^{-.5}=0$
$x_{2}=\left(\frac{.5 a_{2}+.5 a_{12} x_{1}^{5}}{-a_{22}}\right)^{2}$
$=\left(-.5 a_{2} a_{22}^{-1}-.5 a_{12} a_{22}^{-1} x_{1}^{5}\right)^{2}$

($x_{2}=0.25 a_{2}{ }_{2} a^{-2}{ }_{22}$

كشش توليد (Ep)
معادله كشش توليد نسبت به
بطورى كه :

$$
E_{p_{1}}=\frac{d y}{d x_{1}} \frac{x_{1}}{y}=\left(a_{11}+.5 a_{1} x_{1}^{-.5}\right) \frac{x_{1}}{y}
$$

بنابراين كشش توليد، آنطور يكه در تابع توليدكاب ـدا گلاس وجود دارد، يكك مقدار
ثابت نيست و تابعى است از
داشت.
(F-F
توابع درجه دوم و ريشه دوم بوسيله معادلات جنلدجمله|ى با خصو صيات متفاوت بيان
مىگردند.
يك شكل مهم ديگر از توابع توليد جند جملهاى كه با تو جه به ماهيت خطوط شيب همسان، حالت ميانى دو شكل تبعى بيشّين است ـ تابعى است كه در آن مىرسد. در زير سه تابع توليد هندجملهایى از اين نوع، به ترتيب با يكء،دو و n متغير ارائه شده است.

$$
\begin{gather*}
y=a_{0}+a_{1} x_{1}+a_{11} x_{1}^{1.5} \\
y=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{11} x_{1}^{1.5}+a_{22} x_{2}^{1.5}+a_{12} x_{1}^{1.5} x_{2}^{1.5}(\mu \psi-F) \\
y=a_{0}+\sum_{i} a_{i} x_{i}+\sum_{i} a_{i i} x_{i}^{1.5} \\
+\sum_{i} \sum_{j} a_{i j} x_{i}^{1.5} x_{j}^{1.5} \quad i, j=1,2, \ldots, n(i<j)
\end{gather*}
$$

برای تشريج واكنش محصول به كود، اشكال ديگرى از توابع هذلولى و غيرهذلولى پيشنهاد شده است، متأ سفانه اكثر اين معادلات براى استفاده در كــارهاى تـجربى مشكــل

مى ماشند و به همين علت، در بين محققان از عموميت چجندانى برخوردار نمىباشنده، يكى از معادلات هذلولى يسشنهاد شده عبارتست از :

$$
y=\frac{a_{0} x_{1}}{a_{1}+x_{1}}+a_{2} x_{1}
$$

استخراج $M P_{1}$ از رابطه (F-هr) ، همانند استخراج MP از تابع تـوليد ريشـه دوم
است، كه عبارتست از :

$$
\frac{d y}{d x_{1}}=\frac{a_{0} a_{1}}{\left(a_{1}+x_{1}\right)^{2}}+a_{2}
$$

توجه داشته باشيد كه ${ }_{2}$ در اين معادله بطور كلى منغى مى باشدل، بنابراين بعد از آنكه
 يكى از انواع ديگر معادله هذلولى (بيشنهاد شده بوسيله تيلاو ') عبار تست از از :

$$
y=\left[a_{1} x_{1}+a_{11} x_{1}^{2}\right]^{1 / 2}
$$

MP

$$
M P_{1}=\frac{d y}{d x_{1}}=\frac{a_{1}+2 a_{11} x_{1}}{2\left(a_{1} x_{1}+a_{11} x_{1}^{2}\right)^{1 / 2}}
$$

 عبار تست از :

$$
\begin{equation*}
y=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3} \tag{q}
\end{equation*}
$$

در اين حندجملهاى اگر和 $=\frac{-1}{3} a_{2} a_{3}^{-1}$ است. از قرار $M P_{1} ، x_{1}=\frac{-1}{3} a_{3}^{-1}\left[a_{2} \pm\left[a_{2}{ }^{2}-3 a_{1} a_{3}\right)^{0.5}\right.$ نرخ فزاينده كـاهش

[^30]2. Marginal productivity

يكى از رايجترين شكلهاى توبع جندجملهاى، تابع لُجستيك' ست.

$$
y=\frac{a_{0}}{1+a_{1} e^{-a_{2} x_{1}}}
$$

 a_{o} (Fo-F) افزايش مى يابد.
لذا اين معادله اجازه نمىدهد منحنى توليد كل حالت نزولى بخود بییيرد، از رابـطط , $M P_{1}\left(f_{\circ}-\neq f\right)$

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{0} a_{1} a_{2} e^{-a_{2} x_{1}}\left(1+a_{1} e^{\left.-a_{2} x_{1}\right)^{-2}}\right.
$$

Ep 1 اين تابع داراي كشش توليد متغير و غيرمنفى است. با مسـاوى يك تـراردادن

$$
\begin{equation*}
x_{1}=a_{1}^{-1} a_{2}^{-1}\left(a_{1}+e^{a_{2} x_{2}}\right) \tag{FY-F}
\end{equation*}
$$

1. Logistic function

ا-در تابع لجستيك اگر x=0 a ميل مى a_{0} مى توان مقاديرى برانى وييداكرد. منحنى لجستيك در زير نمايش داده شده است (م)
' '
 گرديد. او شايد اولين دانشجوى كشاورزى بود كه يك تابع توليد غيرخطى را برایى رابطه
 وا اكش كود بيشنهاد كرد.

$$
\ln a_{0}-\ln \left(a_{0}-y\right)=c x
$$

 شكل از معادله واكنش در موارد زير مورد انتقاد. قرار گر فته است. ا- اينكه فكر كنيم c يك مقدار ثابت بوده و هيجّ رابطهاى با محصول ، آب و و هوا ا يا عوامل محيطى ندارد، نامعقول است. Y- Yمعادله واكنش دربرگيرنده محصولات كلا نز نزولى يا توليدات نهائى منفى نيست. به
 الهلاح نمود، بطورى كه :

$$
\begin{equation*}
y=\left(1-10^{-c x}\right)\left(10^{-k x}\right)\left(10^{c}\right) \tag{Ff-F}
\end{equation*}
$$

در اين معادله k، عامل خسارت است.
سِس اسييلمن مستقلاً معادله محصول نهائى را يـشينهاد كرد :

$$
y=M-A R^{x}
$$

1 Mitscherlich - spillman production function
2. Response function 3. B.Baule
 حدا كثر محصول كل قابل حصول بواسطه افزايش در سطح ماده غذائى xاست .
 به عنوان نسبت دو توليد فيزيكى نهائى متوالئ تعريف شده است، يعنى:

$$
\begin{equation*}
R=\frac{M P P_{i}}{M P P_{i-1}} \tag{f9-f}
\end{equation*}
$$

بنابراين، R نسبت بين توليدات نهائى مربوط به i امين و 1-i أمين واحد نهاده است.
 تغيير خواهد كرد. معادله (F-\& (F) را همحْنين مى توان اينگونه نوشت :

$$
Y=M-A+A-A R^{x}=(M-A)+A\left(1-R^{x}\right)
$$

 مجانب است، بسته به اينكه تنها واكنش نهاده متغير يا ستاده كل قابل

$$
Y=A \Pi\left(1-R_{i}^{x_{i}}\right)
$$

توجه كنيد كه در رابطه (FA-F) ، نهادهماى متا متغير نقش عواململ تعيين حد را را بـازى مى كنند. حال مى تو انيم معادلات واكنش رابـا

$$
\begin{gather*}
y=A\left(1-R_{1}^{x_{1}}\right) \tag{69-6}\\
y=A\left(1-R_{1}^{{v_{1}}_{1}}\right)\left(1-R_{2}^{x_{2}}\right) \\
y=A \Pi\left(1-R_{i}^{x_{c}}\right)
\end{gather*}
$$

توليد متوسط (AP)
از تابع واكنش (Fq-Fq) با يك متغير، توليد متوسط نسبت به نـهاده
مى توان بدست آورد، بطورى كه :

$$
A P_{1}=\frac{A\left(1-R_{1}^{1 x}\right)}{x_{1}}=A\left(1-R_{1}^{x_{1}}\right) x_{1}^{-1}
$$

بنابراين، توليدمتوسط نهاده خواننده بعنيان تمرين شكل منحنى توليد متوسط بدست آمده از رابطه (XY-Y) را را مى تواند آزمايش كند.

توليد نهائى (
معادله توليد نهائى بدست آمله از تابع توليد با يك نهاده متغير (FQ \& \&

$$
M P_{1}=\frac{d y}{d x_{1}}=-A R_{1}^{x_{1}} \ln R_{1}
$$

وقتى منحنى اين معادله بر روى نمودار رسم شود، بخوبى مشاهده مى گردد كه منحنى توليد نهائى بدون نظر گرفتن فرض منفى نسبت به محور نهاده مجانب است. بنابراين بواسطه
 قرار گير دكه توليد كل كاهش يابد و در نتيجه توليد نهائى منغى شود، مناسب نيست نـئ منحنى هاى توليد همسان
معادله توليد همسان استخراج شده از تابع توليد با دو نهاده متغير عبار تست از :

$$
\begin{equation*}
x_{1}=\ln \left[1-\frac{y_{0}}{A\left(1-R_{2}^{x_{8}}\right)}\right]\left(\ln R_{1}\right)^{-1} \tag{-}
\end{equation*}
$$

منخنى هاى توليد همسان

شُكل (f-10 ا) : منحنى هاى توليد همسان و خطوط شيب همسان براى تأبع توليد اسبيلمن

رسم منحنى معادله توليد همسان بيان كنده سطوح مختلف ستاده است. منحنى هاى

 است. نرخ جانشينه فنى (RTS) از معادله توليد همسان (RF-F) ($R T S_{21}$)

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{\left(1-R_{1}^{r_{1}}\right) R_{2}^{x_{1}} \ln R_{2}}{\left(1-R_{2}^{z_{z}}\right) R_{1}^{x_{1}} \ln R_{1}}(\Delta \Delta-\mathcal{F})
$$

خطوط شيب همسان
c خطوط شيب همسان را مى توان با مساوى قراردادن رابطه (F F F
بدست آورد، چحنانكه :

$$
(\Delta T-F)
$$

$$
x_{1}=\ln \left[\frac{R_{2}^{x_{2}} \ln R_{2}}{c\left(1-R_{2}^{x_{2}}\right) \ln R_{1}+R_{2}^{x_{2}} \ln R_{2}}\right] / \ln R_{1}
$$

$$
\begin{aligned}
& \frac{\left(1-R_{1}^{x_{1}}\right) R_{2}^{x_{1}} \ln R_{2}}{\left(1-R_{2}^{x_{2}}\right) R_{1}^{x_{1}} \ln R_{1}}=c \\
& c\left(1-R_{2}^{\gamma_{2}}\right) R_{1}^{x_{1}} \ln R_{1}=\left(1-R_{1}^{x_{1}}\right) R_{2}^{x_{2}} \ln R_{2} \\
& =R_{2}^{x_{1}} \ln R_{2}-R_{1}^{x_{1}} R_{2}^{x_{2}} \ln R_{2} \\
& c\left(1-R_{2}^{x_{1}}\right) R_{1}^{x_{1}} \ln R_{1}+R_{1}^{x_{1}} R_{2}^{x_{2}} \ln R_{2}=R_{2}^{x_{1}} \ln R_{2} \\
& R_{1}^{x_{1}}=\frac{R_{2}^{x_{2}} \ln R_{2}}{c\left(1-R_{2}^{x_{2}}\right) \ln R_{1}+R_{2}^{x_{1}} \ln R_{2}} \\
& \text { باگر فتن لگاريتم طبيعى از هر دوطرف رابطه، داريم : } \\
& x_{1} \ln R_{1}=\ln \left[\frac{R_{2}^{X_{2}} \ln R_{2}}{c\left(1-R_{2}^{X_{2}}\right) \ln R_{1}+R_{2}^{\gamma_{2}} \ln R_{2}}\right]
\end{aligned}
$$

در اينجا خخطو شيب همسان بعلت تواندار بودن تابع بصورت خطوط مستقيم نتخواهند بود
 كرده و بطور مجانب نسبت به محور نهاده قرار دارند. يعنى در سطوح بالائى نهاده، خطوط شيب همسان به حالت خط مستقيم نزديك مى شوند. در نتيجه خطوط شيب همسان همانند تابع
 مرزى يكك سطح مرزى وجود دارد. ماهيت عبور كردن خطوط مقياس از مركز مختصات دلالت بر تركيب نهاده متغير براث سطوح مختلف ستاده دارد.

خطوطمرزى
خطو ط مرزى در اين تابع با محور نهاده يكسان است؛ در حقيقت براحتى مى توان با كمكى گرفتن از ماهيت منحنى هاى توليد همسان متو جه اين مطلب گرديد. برای اين منظور خواننده بايد رابطه (F حل نمايد، تا اين مسأله درباره خطوط مرزى براى تابع توليد استيلمن ثابت گردد.

ץ-\&- تابع توليد تواندار

$$
\begin{align*}
y & =a_{0} \cdot x_{1}^{a_{1}} \\
y & =a_{0} \cdot x_{1}^{a_{1}} x_{2}^{a_{2}} \\
y & =a_{0} x_{1}^{a_{1}} \cdot x_{2}^{a_{2}} \ldots x_{n}^{a_{n}} \\
& =a_{0} \Pi x_{i}^{a_{i}}, \quad i=1,2, \ldots, n
\end{align*}
$$

 ثابت و (مى باشند. شكلهاى تخمين خور ده معادلات مربوط به روابط (عبارتند از :

$$
\begin{align*}
& \ln y=\ln a_{0}+a_{1} \ln x_{1} \tag{70-f}\\
& \ln y=\ln a_{0}+a_{1} \ln x_{1}+a_{2} \ln x_{2} \tag{71-f}
\end{align*}
$$

$$
\ln y=\ln a_{0}+\sum_{i} a_{i} \ln x_{i}, \quad i=1,2, \ldots, n . \quad(7 r-\mathcal{F})
$$

شُكل جبرى تابع توان دار با يك نهاده متغير در شكل ((II-F) نشان داده شده است. اين تابع توليد در استفاده از مقادير بالائى نهاده مسطح مىگر ست كه داراى نقطه حدا كثر مشخصى نيست. چنين تابعى هرگز نسبت به محور نهاده، حالت

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x_{1}^{2}}=a_{1}\left(a_{1}-1\right) \frac{y}{x_{1}^{2}}<0 \quad: \quad \text { سطح مقعر برای تابع است. يعنى } \\
& \frac{\partial^{2} y}{\partial x_{2}^{2}}=a_{2}\left(a_{2}-1\right) \frac{y}{x_{2}^{2}}<0
\end{aligned}
$$

همحتنين اين مسأله مستلزم Tن است كه دترمينال مربوط را بر

$$
\left|\begin{array}{cc}
\frac{\hat{\partial}^{2} y}{\partial x_{1}^{2}} & \frac{\partial^{2} y}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} y}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2}^{2}}
\end{array}\right|
$$

كه از دترمينال مذكور اين مقدار حاصل مىگردد. مقدار با توجه به مقادير $a_{1}+a_{1}$ ، a_{2} مى تو اند 1

 اقتصادى مد نظر قرار داد.

توليدمتوسط AP

تمامى نهادهها بدست مى آيد. بطورى كه :

$$
A P_{i}=y / x_{i}
$$

[^31]از $A P_{i}$
تابعى از سطح همان نهاده 1 است.

توليدنهايـ (MP)
 با استفاده از مشتق جز نئى مرتبه اول از yنسبت به

$$
\begin{align*}
\frac{\partial y}{\partial x_{i}} & =M P_{i}=a_{i} x_{i}^{a_{1-1}} a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{i-1}^{a_{i-1}} x_{i+1}^{a_{1+1}}, \ldots, x_{n}^{a_{n}} \\
& =a_{i} x_{i}^{-1} a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}}, \ldots, x_{n}^{a_{n}^{n}} \tag{7f-f}\\
& =a_{i} x_{i}^{-1} y=a_{i} \frac{y}{x_{i}}
\end{align*}
$$

X_{i} همانند $M P_{i}$ ، $A P_{i}$ استع نزولى است، يعنى

 يكك زمان برایى تابع امكانپذير نيست. منحنى توليد همسان
معادله توليد همسان،

$$
x_{1}=\left[y^{0} /\left(a_{0} x_{2}^{a_{2}} x_{3}^{a_{3}} \ldots x^{a_{n}}\right)\right]^{1 / a_{1}}
$$

كه،

$$
x_{1}=\left(\frac{y_{0}}{a_{0} x_{2}^{a_{1}}}\right)^{1 / a_{1}}=\left(\frac{y^{0}}{a_{0}}\right)^{1 / a_{1}} x_{2}^{-a_{2} / a_{1}}
$$

هر يك از منحنى هاى توليد همسان را مى توان از اين يكى بدست آورد. بدين منظور،

يعنى صفر شُدن ستاده. منحنى هاى توليد همسـان بطور كلى دارای شيب منغى و نسبت به مركز

 مثبت توجه نمائيد. با گر فتن مشتق جزئى مرتبه دوم $\frac{d^{2} x_{1}}{d x_{2}^{2}}=\frac{a_{2}\left(a_{1}+a_{2}\right)}{a_{1}^{2}}\left(\frac{y^{0}}{a_{0}}\right)^{1 / a_{1}} x_{2}^{-\left(2 a_{1}+a_{2}\right) / a_{1}}>0 \quad: \quad: \quad$ (77-チ)
بدين تر تيب ثابت مىگردد كه منحنى هاى توليد همسان نسبت به مـركز مــختصات محدب مى باشند.
نرخ جانشينى فنى (RTS)
از رابطه (هN-F) ، نرخ جا جانشينى فنى نهاده
آورد، بطورى كه :

$$
\begin{equation*}
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{a_{2}}{a_{1}} \frac{x_{1}}{x_{2}} \tag{7V-F}
\end{equation*}
$$

$$
R T S_{j l}=-\frac{d x_{i}}{d x_{j}}=\frac{a_{j}}{a_{i}} \frac{x_{i}}{x_{j}}
$$

 مى گردند، يك تابع خطى نسبت به

 خطوط شيب همسان
با مساوى قرار دادن رابطه (Y (Y - ب) با مقدار ثابت

$$
\begin{align*}
& \text { مى توان بدست آورد ، بطورى كه : } \\
& \frac{a_{j}}{a_{i}} \frac{x_{i}}{x_{j}}=K_{j i} \\
& \text { x } x_{i} \\
& x_{i}=K_{j i} \frac{a_{i}}{a_{j}} x_{j} \tag{79-F}
\end{align*}
$$

كه رابطه (F (79) يك معادله خطى با عرض از مبدأ صفر مى باشد. بنابراين خطوط
 همسان، خطوط مقياس راكه بيان كننده نسبت ثابت يا تركيب بين دو نهاده متغير در سطوح

خطوطمرزى
خطور مرزثى مربوط به $R T S_{i j}=0$ عبار تند از : $R T S_{j i}$

$$
\begin{align*}
& x_{i}=0 \\
& x_{j}=0
\end{align*}
$$

بنابراين، اين دو خط مرزى در يك فضاى دوبعدى مساوى با محور نهادهها بوده و با
 مى.

كشش توليدنسبت به نهاده

كشش توليد نسبت به هر نهادهٔ متغير، مثلا"
آورد، بطورى كه: :

$$
\begin{equation*}
E_{p_{i}}=\frac{\partial y}{\partial x_{i}} \frac{x_{i}}{y}=\frac{a_{i} y}{x_{i}} \frac{x_{i}}{y}=a_{i} \tag{Vr-f}
\end{equation*}
$$

از رابطه (ץ-Y) با استفاده از فرمول ديگرى،

$$
E_{p_{i}}=\frac{\ln y}{\ln x_{i}}=a_{i}
$$

 متغير بودن كشش توليد در تابع كاب ــدا كاكلاس اشاره دارد. كششجانشينى

 ثابت نمود، بطورى كه :

$$
y=a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}^{2}}, \quad a_{1}, a_{2}>0
$$

1. Ulveling
2. Fletcher

$$
\begin{aligned}
& R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{M P_{2}}{M P_{1}}: \text { با بدست آوردن } R T S_{21} \text { خنانكه } \\
& =\frac{a_{2}\left(y / x_{2}\right)}{a_{1}\left(y / x_{1}\right)}=\frac{a_{2}}{a_{1}} \frac{x_{1}}{x_{2}} \\
& \text { بدين ترتيب داريم : } \\
& \frac{x_{1}}{x_{2}}=-\frac{a_{1}}{a_{2}} \frac{d x_{1}}{d x_{2}}
\end{aligned}
$$

بنابراين

$$
\begin{align*}
E S_{21} & =\frac{d\left(x_{1} / x_{2}\right)}{d\left(-d x_{1} / d x_{2}\right)} \frac{-d x_{1} / d x_{2}}{x_{1} / x_{2}} \\
& =\frac{a_{1}}{a_{2}} \frac{\left(a_{2} / a_{1}\right)\left(x_{1} / x_{2}\right)}{x_{1} / x_{2}}=1
\end{align*}
$$

با گسترش تابع توليد باكثش جـانشينى ثـابت (CES)' بـوسيله آرو

بازدههاى نسبت به مقياس

بازد0هاى نسبت به مقياس برایى اين نوع تابع توليد به آسانى بر آورد مى گر ددر، بدين ترتيبكه از اين معادله نسبت به رابطه ((
共 $=a_{1}+a_{2}+\ldots . .+a_{n}=\Sigma a_{i}$

$$
\begin{equation*}
i=1,2,3, \ldots ., n \tag{F}
\end{equation*}
$$

 مى ماشند.

1. Constant Elasticity of Substitution production function

2. K. J. Arrow
3. H.B. Chennery
4. B.S. Minhas
5. R.M.Solow

تعميم تابع توليدكاب_داكَكاس
تابع توليد كاب ــدا گالاس در بعضى از اشكال تعميم يافته است، بطورى كه بعضى از مهمترين شكلهاى عمومى آن عبارتست از از : ا- تابع توليد ترانسندنتال

$$
y e^{b y}=a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}}, \quad b \geqslant 0
$$

لكاريتم در رابطه (F- (V) مى توان اينگونه نوشت :

$$
\begin{equation*}
\ln y+b y=\ln a_{0}+a_{1} \ln x_{1}+a_{2} \ln x_{2} \tag{Vч-F}
\end{equation*}
$$

با دو نهاده متغير اين تابع توليد را اينگونه مىتوان نوشت :

$$
y^{1+b \ln y}=a_{0} x_{1}^{a_{1}} x_{2}^{a_{2}}, \quad b \geqslant 0
$$

[^32]\[

$$
\begin{aligned}
& \text { دارند. } \\
& \text { rـ تابع توليد نرلاو -رينگستاد }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { بخش (V-Y) ارائه شدهاند. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اين تابع توليد با دو نهاده متغير بدين گونه نوشته مى شود. }
\end{aligned}
$$

محدوديت برای اين تابع وقتى است كه 0 = b 0 اشاشد. اين شُكل از تابع توليد، تبديل يافته شكل تابع كاب ـدا گلاس است. باگر فتن لگاريتم از رابطه (VV-F) ، تابع مذكور عبارت خواهد بود از :

$$
(1+b \ln y) \ln y=\ln a_{0}+a_{1} \ln x_{1}+a_{2} \ln x_{2}
$$

بدين ترتيب Lny و (Lny) در طرف هچ مع معادله ظاهر مى شوند. F- تابع توليد باكشش جانشينى ثابت (CES)
 يافته تابع كاب ــدا كالاس است. اين تابع نشان داده مى شود بو بيله معادله :

$$
\begin{equation*}
y=A\left[\delta x_{1}^{-p}+(1-\delta) x_{2}^{-\rho}\right]^{-1 / p} \tag{9}
\end{equation*}
$$

كه در ثنين تابعى

$$
y=A x_{1}^{8} x_{2}^{1-8}
$$

 اين واقعيت را از رابطه (VQ (F) نمىتوان دريافت ولى با با استفاده از قانون هیتال ' مى توان

$$
\lim _{x \rightarrow b} f(x)=0, \quad \lim _{x \rightarrow b} g(x)=0
$$

$$
\lim _{x \rightarrow b} \frac{f^{\prime}(x)}{g^{\prime}(x)}=a
$$

و اگر

$$
\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=\alpha
$$

باگرفتن لگاريتم طبيعى از هر دو طرف رابطه (VQ -Y) ، بدست مى آوريم :

$$
\ln y=\ln A-\frac{1}{\rho} \ln \left[\delta x_{1}^{-p}-(1-\delta) x_{2}^{-p}\right]
$$

$$
\ln y-\ln A=\frac{-\ln \left[\delta x_{1}^{-p}-(1-\delta) x_{2}^{-\rho}\right]}{\rho}=\frac{f(\rho)}{g(\rho)}
$$

كه (f) گر فتن مشتق از صورت كسر، خواهيم داشت.

$$
f^{\prime}(\rho)=\frac{\delta x_{1}^{-p} \ln x_{1}+(1-\delta) x_{2}^{-p} \ln x_{2}}{x_{1}^{-p}+(1-\delta) x_{2}^{-p}}
$$

جنانحه ρ به سمت صفر ميل كند، رابطه فـوق بـهـ
مى شود. وقتيكه 1 = 1 'وباشد با استفاده از قانون هيتال، حالت حد عبار تست از :
$\ln y-\ln A=\delta \ln x_{1}+(1-\delta) \ln x_{2}$

$$
y=A x_{1}^{i} x_{2}^{1-8} \quad: \quad \text { كه يعنى }
$$

 مورد بحث قرار مىگيرند.

(متعالى) Y-Y

 (

معادلات جبرى تابع توليد ترانسندنتال با يك؛، دو و جندين نهاده به ترتيب عبارتند از:

$$
\begin{gather*}
y=a_{0} x_{1}^{a_{1}} e^{b_{1} x_{1}} \\
y=a_{0} x_{1}^{a_{1}} x_{2}^{a_{3}} e^{b_{1} x_{1}+b_{2} x_{2}} \\
y=a_{0} \Pi x_{i}^{a_{1}} e^{b_{1} x_{i}}, \quad i=1,2, \ldots, n
\end{gather*}
$$

در روابط (

 توليد داده شده در رابطه ((

$$
\ln y=\ln a_{0}+\Sigma a_{i} \ln x_{i}+\Sigma b_{i} x_{i}
$$

خو اهد بود.

توليد متوسط

عبارتست از :

$$
A P_{1}=\frac{y}{x_{1}}=\frac{a_{0} x_{1}^{a_{2}} e^{b_{1} x_{1}}}{x_{1}}=a_{0} x_{1}^{a_{1}-1} e^{b_{1} x_{1}}
$$

همانند تابع توليد استّيلمن، اينتجا نيز توليد متوسط نهاده X تابعى از سطح همان نهاده است. بنابراين بوضوح منحنى توليد متوسط غير خطى است.

تولِد نهائى

نسبت به

$$
\Delta P P_{1}=\frac{d y}{d x_{1}}=y\left(\frac{a_{1}}{x_{1}}+b_{1}\right) \quad(\Lambda \eta-F)
$$

از رابطه ()
مر.بوط به نقطه عطث را بر روى منحنى توليلد مى توان بيدا نمو2.

$$
\begin{gather*}
y\left(\frac{a_{1}}{x_{1}}+b_{1}\right)=0 \\
\frac{a_{1}}{x_{1}}+b_{1}=0 \\
x_{1}=-\frac{a_{1}}{b_{1}}
\end{gather*}
$$

$$
\text { در صور تيكه } 0 \text { ق } 0 \text { باشد }
$$

سطح حدا كثر ستاده را بوسيله جايگزين نمودن مقدار آراز رابطه (AV-Y) در رابطه (^1-チ) قراردادن مشتق مر تبه دوم مى توان بدست آورد.

$$
\frac{d^{2} y}{d x_{1}^{2}}=y \cdot\left(\frac{a_{1}^{2}-a_{1}}{x_{1}^{2}}+\frac{2 a_{1} h_{1}}{x_{1}}+b_{1}^{2}\right)=0
$$

حال معادله مذكور را برایى

$$
x_{1}=\frac{-a_{1} \pm \sqrt{a_{1}}}{b_{1}}
$$

سطع ستاده مربوط به نقطه عطف را بـوسيله جـايگز ين نـمونه مـقدار اx از رابـطـه (در رابطه ((1 (1) مى تو

منحنىهاى توليد همسان

 تابع توليد با دو نهاده متغير را از رابطه (AY-Y) مى توان بدست آورد. نتيجه اين معادله، يك

نمود. اين معادله عبارتست از :

$$
\ln x_{1}+m x_{1}=u \ln x_{2}+v x_{2}+k
$$

$$
m=\frac{b_{1}}{a_{1}}, \quad u=-\frac{a_{2}}{a_{1}}, \quad v=-\frac{b_{2}}{a_{1}} \quad k=\frac{1}{a_{1}}\left(\ln y^{n}-\ln a_{0}\right)
$$

از تابع توليد (AY-F) با دو نهاده متغير، نرخ جانشينى فنى

$$
\begin{align*}
R T S_{21} & =-\frac{d x_{1}}{d x_{2}}=\frac{M P_{2}}{M P_{1}} \\
& =\frac{\partial y / \partial x_{2}}{\partial y / \partial x_{1}}=\frac{x_{1}}{x_{2}} \frac{a_{2}+b_{2} x_{2}}{a_{1}+b_{1} x_{1}}
\end{align*}
$$

خط شيب همسان
 ، x_{1}

$$
\begin{equation*}
x_{2}=\frac{a_{2} x_{1}}{x_{1}\left(k b_{1}-b_{2}\right)+k a_{1}} \tag{91-F}
\end{equation*}
$$

رابطه (F (F) گا گوياى اين مطلب است كه خطوط شيب همسان از مركز مـختصات عبور كرده و غيرخطى باشند.

خطوطمرزى

$$
\begin{equation*}
x_{2}=-\frac{a_{2}}{b_{2}} \tag{4r-f}
\end{equation*}
$$

به همين نحو، ديگر معادله خط مرزى مربوط به RTS 0 ، عبار تست از :

$$
x_{1}=-\frac{a_{1}}{b_{1}}
$$

 مستقيم و موازى با محور رهاى نهاده
 توليد ترانسن دنتال مىباشند.

Ep كشش توليد

از رابطه ((1) ، عبارت كشش توليد نسبت به

$$
\begin{align*}
E_{p_{1}} & =\frac{M P_{1}}{A P_{1}}=\frac{y\left(a_{1} / x_{1}+b_{1}\right)}{y x_{1}^{-1}} \\
& =\left(\frac{a_{1}}{x_{1}}+b_{1}\right) x_{1}=a_{1}+b_{1} x_{1}
\end{align*}
$$

رابطه (F-F-9) ، بد ين مفهوم است كه كشش توليد هر نهاده ثابت نبوده و تابع غيرخطى از سطح همان نهاده است، بدين ترتيب اين تابع بر محدوديت كثش تو توليد ثابت كه در تابع تواندار وجود داشت غلبه نموده است.

مـمادله مقاومت

> اصالح شدهاى از آن حنين است :

$$
y^{-1}=a_{0}+a_{1}\left(a_{2}+x_{1}\right)^{-1}
$$

كه يك تابع وا كنش كود است كه موجود در خاك و و لانيز بازده محصول است.
 معادله

$$
M P_{1}=\frac{d y}{d x_{1}}=a_{1}\left[a_{1}+a_{0}\left(a_{2}+x_{1}\right)\right]^{-2}
$$

بنابراين، اين شكل ثنابع توليد فقط مقادير مثبت توليد نهائى را مى یذ يرده، حنانكه داده شده بوسيله (ץ-7 7 (9 با محور نهاده مجانب است.
† ¢ - تابع توليد باكشش جانشينى ثابت (CES)

در در آمد ملى تُابت نيست، بلكه با تغيير نرخهاى دستمزد، تغيير ميكند.

$$
\frac{Y}{L}=\frac{w}{d}
$$

كه Y، در آمد ملى، L سطح نيروى كار ، W نرخ دستمزد و و مقدار ثابت است.

 كردند باكشش جانشينى ثابت σ. در اين معادله كتش برابر با مقـار واحد نباشد.

$$
y=A\left[\delta x_{1}^{-p}+(1-\delta) x_{2}^{-p}\right]^{-1 / p}
$$

 مى

به راحتى مى توان ملاحظه نمود كه تابع CES همگن از درجه يك يك است است. بطورى كه اگَ به تر تيب جاى

$$
\begin{aligned}
& A\left[\delta\left(k x_{1}\right)^{-\rho}+(1-\delta)\left(k x_{2}\right)^{-\rho}\right]^{-1 / \rho}=A\left[k^{-\rho}\left\{\delta x_{1}^{-\rho}+(1-\delta) x_{2}^{-\rho}\right\}\right]^{-1 / \rho} \\
& =\left(k^{-p}\right)^{-1 / p} y=k y
\end{aligned}
$$

 دوم مى توان بصورت زير (آن گونه كه ج ـكمتنا انجام داده است) بدست آورد.

[^33]\[

$$
\begin{align*}
\ln y= & \ln A+\delta \ln x_{1}+(1-\delta) \ln x_{2} \\
& -\frac{\rho}{2} \delta(1-\delta)\left(\ln x_{1}-\ln x_{2}\right)^{2}+v \tag{99-F}
\end{align*}
$$
\]

 ــداگَاس با دو نهاده مى باشئد.

توليد متوسط (AP)
از تابع توليد در رابطه (4^- (4)) ، توليد متوسط (AP) را مىتوان بدست آورد.

$$
A P_{1}=x_{1}^{-1} y=x_{1}^{-1} A\left[\delta x_{1}^{-p}+(1-\delta) x_{2}^{-\rho}\right]^{-1 / p}
$$

توليد نهائى (MP)
توليد نهائى (MP) رابطه (母-^) [/ / به جاى [

$$
\begin{aligned}
& =\delta_{A}[\ldots]^{(-1 / \rho)-1} x_{1}^{-\rho-1} \\
& =\delta A[\ldots]^{-[(1+p) / p]} x_{1}^{-(1+p)} \\
& =\delta \frac{A^{1+p}}{A^{p}}[\ldots]^{-[(1+\rho) / p]} x_{1}^{-(1+\rho)} \\
& =\frac{\delta}{A^{\rho}}\left\{A[\ldots]^{-1 / \rho}\right\}^{1+\rho} x_{1}^{-(1+\rho)}
\end{aligned}
$$

$$
=\frac{\delta}{A^{P}}\left[\frac{y}{x_{1}}\right]^{1+\rho}
$$

$$
\left.\frac{\delta}{A^{p}}\left(\frac{y}{x_{1}}\right)^{1+\varnothing}>0 \text { مثبت است، يعنى } 0 \text { (} 1 \cdot 1-\mu\right)
$$

بطور مشابه MP2 را نيز مىتوان بدست آورد

$$
M P_{2}=\frac{\partial y}{\partial x_{2}}=\frac{1-\delta}{A^{p}}\left(\frac{y}{x_{2}}\right)^{1+p}
$$

 تمامى سطوح مثبت آن نهادهها داراى صفت ويزَه مى باشُد.

منحنى هاى توليد همسان

منحنى توليد همسان بوجود آمده بو سيله تابع توليد CES، معمو لاً داراي شيب مننى و مـحدب نسبت به مركز مختصات در در ناحيه منطقى توليد مى باشد. معادله منحنى توليد همـيسان را را براى تابع توليد (F-9 F) مى توان استخراج نمود، بطورى كه :

$$
x_{1}=\left[\frac{(y / A)^{-p}-(1-\delta) x_{2}^{-p}}{\delta}\right]^{-1 / p}
$$

شُكل محدب منحنى توليد همسان بوجو G مى σ ماشد. دو حد و سه قضيه حد فاصله زير تمامى شُكلهاى ممكن منحنىهاى توليد همسان را توصيف مىكند.
$x_{2}>x_{1}$ تضيه 1 - وقتى σ به سمت صفر و ρ به سمت مئبت بىنهايت ميل مى باشد RTS 21 به صفر نزديك مى شود و اگَر اينجا، منحنى توليد همسان به حالت قائم الزاويه نزديك مى میرددر.

تضيه مى
 توليدكاب ـ دا گالو تبديل مى شود.
 برخورد مىكتند.
 منحنى هاى توليد همسان بصورت خطوط مستقيم مىباشند. در اينجا نهادهها بـططور كــامل جانشين همديگر مىگردند.

نرخ جانشينى فنى (RTS)
شيب منفى، منحنى توليد همسان در رابطه (F-F F ()) ، بيان كننده نرخ جانشينى فنى بين دو نهاده

$$
R T S_{21}=-\frac{d x_{1}}{d x_{2}}=\frac{M P_{2}}{M P_{1}}=\frac{\frac{1-\delta}{A^{p}}\left(\frac{y}{x_{2}}\right)^{1+\rho}}{\frac{\delta}{A^{p}\left(\frac{y}{x_{1}}\right)^{1+p}}=\left(\frac{1-\delta}{\delta}\right)\left(\frac{x_{1}}{x_{2}}\right)^{1+\rho}(1 \circ f-q)}
$$

با بكارگيرى شرايطى كه

$$
\left(\frac{1-\delta}{\delta}\right)\left(\frac{x_{1}}{x_{2}}\right)^{1+\rho}>0
$$

بوسيله مشتق مرتبه دوم رابطه (()) ، مى تو ان ثان ثابت نمو كه منحنى هالى توليد
 يكى تابع CES، برای دامنه 0 بركز 0 يك 0 يك تابع منظم اكيداً شبه مقعر است.

خطوط شيب همسان
 نسبت به 2 ، معادله خط شيب همسان بدست مى آيد، بطورى كه :

$$
\begin{align*}
\frac{1-\delta}{\delta}\left(\frac{x_{1}}{x_{2}}\right)^{1+\rho} & =k \\
\left(\frac{x_{1}}{x_{2}}\right)^{1+\rho} & =\frac{k \delta}{1-\delta} \\
\frac{x_{1}}{x_{2}} & =\left(\frac{k \delta}{1-\delta}\right)^{1 /(1+\rho)} \\
x_{1} & =\left(\frac{k \delta}{1-\delta}\right)^{1 /(1+\rho)} x_{2}
\end{align*}
$$

از رابطه ((- هـ ه ا) مشاهده مى گردد خطوط شيب همسان، خطوطى مستقيم بوده و از مركز مختصات عبور مىكند.

خطوطمرزى
معادلات خطوط مرزى براى تابع توليد CES رابطهُ (9^-

$$
\begin{array}{ccc}
R T S_{21}=0 & x_{1}=0 \\
& , & \\
R T S_{12}=0 & x_{2}=0
\end{array}
$$

بنابراين خطوط مرزى مربوط به روابـط (F-F دوبعدى مساوى با محور هاى نهاده مىباشند، چخانكه در حالت تابع توليد توان دار مار ملاحظه گرديد.

كشش توليد

$$
\begin{equation*}
E_{P_{1}}=\frac{\partial y}{\partial x_{1}} \frac{x_{1}}{y}=\frac{\delta}{A^{p}}\left(\frac{y}{x_{1}}\right)^{p} \tag{1.9-F}
\end{equation*}
$$

از روابط مذكور ملاحظه مىگردد كه كششهاى توليد ثابت نبوده و تابعى از سطوح
 توليد نهائى، تخمين كشش توليد از تابع توليد CES نيز با مقادير مئبت حاصل مى گردرد.
 كشش جانشينى ثابت كه لزوماً برابر با واحد نبود غلبه يِيداكردي تابع توليد CES شبيه به تابع توليد كاب ــدا گا گلاس است، يعنى داراي كشش با واحد است و آن مم در جائى است كه كمترين هزينه تابع توليد CES استخراج نمائيم.

$$
\begin{aligned}
& \text { :بدين ترتيب نسبت عامل بهينه } \\
& \left(\frac{1-\delta}{\delta}\right)\left(\frac{x_{1}}{x_{2}}\right)^{1+\rho}=\frac{p_{2}}{p_{1}} \text { بد بد }{ }^{1+\rho}
\end{aligned}
$$

كه اكر

$$
\frac{x_{1}^{\dot{x}}}{x_{2}^{\dot{2}}}=k\left(\frac{p_{2}}{p_{1}}\right)^{1 /(1+\rho)}
$$

باگرفتن لكاريتم طبيعى از هر دو طرف رابطه، داريم :

$$
\ln \left(\frac{x_{1}^{*}}{x_{2}^{*}}\right)=\ln k+\frac{1}{1+\rho} \ln \left(\frac{p_{2}}{p_{1}}\right)
$$

با استفاده از فرمول كشش جانشينى در اين معادله، بدست مى آوريم :

$$
\sigma=\frac{d\left[\ln \left(\frac{x_{1}^{*}}{x_{2}^{*}}\right)\right]}{d\left[\ln \left(\frac{p_{2}}{p_{1}}\right)\right]}=\frac{1}{1+\rho}
$$

$$
\left.\begin{array}{r}
-1<\rho<0 \tag{داريم}\\
\rho=0 \\
0<\rho<\infty
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
\sigma>1 \\
\sigma=1 \\
\sigma<1
\end{array}\right.
$$

$$
\frac{d\left(\frac{x_{1}}{x_{2}}\right)}{d\left(-\frac{d x_{1}}{d x_{2}}\right)} \frac{-\frac{d x_{1}}{d x_{2}}}{\frac{x_{1}}{x_{2}}}=\frac{1}{1+\rho}
$$

اندكى دارد.
تابع توليد CES تعميهيافته
ديديم كه تابع توليد CES يك تابع همگن از در درجه يك تعريف گريد
 يكنواخت مثبت مىتوان اينغونه نوشت، بطورى كه هـ :

$$
Y=B\left[\delta x_{1}^{-p}+(1-\delta) x_{2}^{-p}\right]^{-k / p}
$$

در دامنن

 تابع توليد جديد اكيداً مقعر است.

† †- ا اتابع توليد ترانس لاتك (ترانس لتاريتمى)

محدوديتهاى تابع توليد CES، مانند كثش جانـش جانشينى ثابت و مهحدوديت در كاربرد
 از تابع توليد توسعه يابند. تابع توليد ترانسن دنتال لكاريتمى كه معروف به تابِ تابِ توليد ترانس

تابع توليد ترانس لا گك را با nنهاده متغير اين گونه مى توان نوشت :

$y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{0} \prod_{i=1}^{n} x_{i}^{a_{i}} \prod_{i=1}^{n} x_{i}^{i / 2} \sum_{j=1}^{n}\left(b_{i j} \ln x_{j}\right)(1 \mid r-\psi)$ كه yستاده، ${ }^{\text {y }}$ إِارامترهاى نامعلوم مى $b_{i j}$ درست عين توابع توليد از نوع نمائى، اين تابع نيز در اغلب مواقع بصورت لگاريتمى
$\ln y=\ln a_{0}+\sum_{i=1}^{n}\left(a_{i} \ln x_{i}\right)+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(b_{i j} \ln x_{i} \ln x_{j}\right)\left(1 \mid f-q^{\prime}\right)$

 شكل تخمين اين تابع توليد بصورت يك مك معادله ساده است :

$$
\begin{align*}
\ln y_{t}= & \ln a_{0}+\sum_{i=1}^{n} a_{i} \ln x_{i t}+\sum_{i=1}^{n} c_{i i}\left(\ln x_{i t}\right)^{2} \\
& +\sum_{i} \sum_{j} b_{i j} \ln x_{i t} \ln x_{j t}+u_{t}
\end{align*}
$$

1. L.Christensen
2. L.Lau
3. D.Jorgenson
4. Shephard's duality theory

$$
\begin{aligned}
& \text { (IIF-F) } \mathcal{F} \text { (} 1 \frac{1}{2} b_{i j}=C_{i i} \\
& 1,2, \ldots, n \quad(i \neq j)=C_{i j}
\end{aligned}
$$

 تخمين سريعاً افزايش مى يابند، ثانياً، جملات مربوط به مربعات و حاصل ضربهاثى بردارى متغير هاى نهادماى، مسأله جدى هم خطى مركب را با به وجود مى آو آورند.

 استدلال اقتصادى براى حذف اينگونه عبارات مربع از تابع توليد وجو

> توليدنهائى (MP)

توليد نهائى نسبت به نهاده i را از رابطه ((| F F م میتوان بدست آورد، بطورى كه
$M P_{i}=\frac{\partial y}{\partial x_{i}}=\frac{\partial \ln y}{\partial \ln x_{i}}\left(y / x_{i}\right)=\left(a_{i}+\frac{1}{2} \sum_{j=1}^{n} b_{i j} \ln x_{j}\right)\left(y / x_{i}\right)^{(117-q)}$
 $M P_{i}$ دامنه ارزش منفى است؛ به همين نحو، اگر 0 >0

سمت بى نهايت ميل كند، 1 است 1 است. بنابراين از آنجائيكه يكنواختى مستلزم آن است كه
 مسـأله، براى تابع توليد ترانس لاگگ يكك محدوديت به شمار مىرود.

كشـشتوليد
از تابع توليد ترانس لا گك (l|f-F) ، ككش توليد نسبت به نهاده

$$
\begin{align*}
E_{p_{i}}=\frac{\partial \ln y}{\partial \ln x_{i}} & =a_{t}+\frac{1}{2} \sum_{j=1}^{n} b_{i j} \ln x_{j}, \\
j & =1,2, \ldots, n \quad(\mid 1 \vee-F)
\end{align*}
$$

بدين تر تيب، از رابطه (IVV-F) مشاهـه میگردد كه كثش توليد نسبت به نهاده i ، ثابت نيست بلكه تابعى از سطح نهاده زاست (بازدههاى نسبت به مقياس
برایى يك تأع توليد همگن، صرفهجو ئيهاى مقياس ' مى تواند كمتر، برابر يا بز بزرگتر از از واحد باشد. اما براى هر تابعى داده شدهه، بازدههاى نسبت به مقياس، هر مورد مقادير اوليه

 ضريب تابع از رابطه (1|F-F) ارائه شده بوسيله :

$$
\xi=\sum_{i=1}^{n} E_{p_{l}}=\sum_{i=1}^{n} a_{1}+\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j} \ln x_{j}
$$

 عبارتست از :

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i j}=\sum_{j=1}^{n} b_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j}=0 \tag{119-F}
\end{equation*}
$$

بنابراين، و قتى مجموع رديف و ستون ضرائب در جمع عبارات درجه دوم صفر باشد،

$$
h=\sum_{i=1}^{n} a_{i}
$$

حال ملاحظه مىگردد كه اگگر رابطه (119 \& F داخل پيرانتز در رابطه (1) (1) مستقل مىگر دند. در اين حالت اين شبيه تابع توليد كاب ـداگگلاس خواهد بو د، به استثناء اينكه در تابع ترانس لا گك ضرائب كشش توليد نهادهایى با سطوح نهاده تغير مىكنند.

†

$$
y=15+0.5 x
$$

y و x به تر تيب مقادير ستاده و نهاده بر حــب كـنتال' و كـيلوگرم در هـر هكـتار مى باشُند.
(1) نمودار اين تابع توليد را رسم كنيد.
(Y) مفهوم مقدار عرض از مبدأ راتوضيح دهيد (Y) (Y)
(از سطح نهاده مىباشند؟؟ منحنى هاى توليد متو سط و نهايى را بر روى يكى نمو دار رسم نمائيد. جند منحنى وجود دارد، يك يا يو تا
(F) .
((ا) اگر

ا.كنتال واحد وزنى معادل ه0 ا اكيلوگرم است.

تفاوت در قيمت هر واحد X، يعنى X ج ، نتيجه را متفاوت مى سازد؟

أ گونه توابع داراى فروض متداول برایى تجزيه وتحليل تايل تابعى مىباشند؟

ت تا ت

$$
y=10 x_{1}+20 x_{2}
$$

(1) معادله منحنى توليد همسان را بدست آوريد؛ آن را بر زوى نمودار رسم كنيد؛ چهـ

مواقعى اين خنين منحنى هاى توليد همسان را توقع داريد؟

و
(ه) (هنشه منحنى توليد همسان را چنان رسم كنيدكه نوع بازدههاى نسبت به مقياس را
برای اين تابع توليد مشخص سازد
f-f تابم واكنش نيتروزن در زير داده شده است :

$$
y=2500+12 n-0.03 n^{2}
$$

كه y توليد ذرت بر حسب كيلوگرم در هكتار و nماده غذائى نـيتروزُن بـر حسب كيلوگرم در هكتار مىباشد، موارد زير را پيداكنيد:

$$
\begin{aligned}
& n=120 \quad, n=50 \text { (1) } \\
& n=120 \quad, \quad n=100 \text { توليد نهايى را از قرار (Y) }
\end{aligned}
$$

كود نيتروزن)؛ • \& /ه روييه در هر كيلوگرم باشد.

(D-Y تابع واكنش فسفر برايى بادام زمينى بر حسب هر هكتار در زير مفروض است :

$$
y=1800+12 P-0.10 P^{2}
$$

كه yمقدار بادام زمينى بر حسب كيلوگرم در هكتار و Pمقدار در هر هكتار مىباشد.
(1) آن سطحى از PP ((($)$ (حدا كثر سطح قابل حصول y
(

 (7) جه مقدار از P بايد مُورد استفاده قرار گيرد اگر اين نهاده از هزينه معاف و و قيمت مثبت مربوط به آن باشد.

بـ $y=2000+10 n+2 p-0.02 n^{2}-0.001 p^{2}+0.30 n p$

 (

اقتصادى معنى دار و مناسب است، يِيداكنيد؟

عبارت بازده نسبت به مقياس تابع زير را بدست آوريد. $y=a_{o}+a_{1} x_{1}+a_{2} x_{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{12} x_{12}$

 انتظار داريد؟ Tيا اين بازده نسبت مقياس اقتصادى يا طبيعى است؟
 مربوط به آن معادله واكنش را رسم كنيد.
¢

†
$y=\frac{a_{0}}{1+a_{1} e^{-a_{2} x_{1}}}$
$x_{1}=a_{1}^{-1} a_{2}^{-2}\left(a_{1}+e^{a_{2}^{x} 1}\right)$ كه עو ،كشش توليد نهاده

$$
y=20.5 x_{1}^{0.4} \cdot x_{2}^{0.35} x_{3}^{0.25} \cdot x_{4}^{0.5}
$$

كه كه
 حسب روبيه و نيروى كار گاو نر (بطور روزانه). لعبار تست از محصصول غله بر بر حسب كتنال در هر هكتار؛ از اين تابع توليد مطلوبست :

 (يابد و تمامى ضرائب متغير هاى ديگر بدون (F) ضرائب كشش توليد را نسبت به هر نهاده متغير يعنى $E P_{i}$ بدست آوريد؛ ايـن ضرائب را تفسير مىكند.
(ه) بازدههاى نسبت به مقياس را بر آورد كنيد، Tيا باز دمهماى نسبت به مقياس اقتصادى
يا طبيعى مىباشند؟ اگر اين چنين است، چرا؟

وجود دارد.
 بدين ترتيب بصورت يك تابع خطى مناسب تبديل گرديده است. آيا اهميت داشت اگر اگر از لگاريتم طبيعى يا معمولى استفاده مىگرديد؟

اr- F

$$
y=10 x_{1}{ }^{0.5 x_{2}}{ }^{0.3} x_{3}{ }^{1.4} \text { : شامل تابع توليدى اين چنين بود }
$$

كه yمقدار ستاده بر حسبكتتال و به كار رفته بر حسب روييه و نيروى كار گاو نر بر حسب رور روزانه، كه تمامى آن نهادمها رما براى

lif-千
 نسبى عوامل را بوسيله اين شيوه مى توان بر رسى نمود؟

10-千 يك تابع توليد تواندار برازش شده با استفاده از اطلاعات بدست آمده از يك مزرعه
نمونه چنين است :
$y=10 x_{1}{ }^{0.1} x_{2}{ }^{0.4} x_{3}{ }^{0.2} x_{4}{ }^{0.08}$
كه y ومدار ستاده در هكتار بر حسب كنتال و

[^34]آنها بر حسب هكتار مىباشند. حال به سؤالات زير در زمينه اين تابع پاسخ دهيد. (1) بازده نسبت به مقياس را بدست آوريد. چچگونگى استخراج آنرا توضيح دهيد.

(Y) عبارت 1 (H (نشان دهيد. آيا شُبيه به فرمولهاى معمولى است؟
($(\boldsymbol{\text { (}}$ (
خطرات احتمالى هنگام استفاده از متغير ها با توجه به تركيب ارائه شُده در اين

性
داگگلاس را براي آن مزارع برازش نمو به، كه تابع بدست آمده حنين است :

$$
y=15 x_{1}^{-0.2} x_{2}^{0.9} x_{3}^{0.08}
$$

كه y مقدار ستاده هر واحد مزرعه بر حسب روبيه، اx هكتار، نيروى انسانى روزمزد و نهاده سرمايه بكار رفته بر حسب زوبيه در هر مز رعه مىباشد. مطلوبست :
(1) خريب منفى مربوط به نهاده زمين را چچگونه تفسير مىكنيد؟ بطور مفصل پاسخ

دهيد.
T T (Y)

موضوع چه مفهومى دارد؟
 جانشنينى و ρ بإرامتر جانشينى است، چنانكه

داگڭاس تبديل مىگردد.
(منحنى چه نتيجهاى حاصل مىگردد ؟

منابع براى مطالهه بيشتر

Arrow, K.J. et al., "Capital and Labour Substitution and Economic Efliciency", Review of Economics and Statistics, 43, 1961, pp 225-250.
Balnukand, B., "Studies in Crop Variation v. The Relation between Yield and Soil Nutrients", Journal of Agricultural Science, 18, 1928, pp 602-627.
Boisvert, Richard N., The Translog Production Function: Its Properties, Its Several Interpretations and Estimation Problems, Cornell University, Ithaca (New York), 1982.
Bronfenbrenner, M., "Production Functions: Cobb-Douglas Interfirm, Intrafirm". Econometrica, 12, 1944, pp 35-40.
Bronfenbrenner, M. and Douglas, Paul H., "Cross-Section Studies in the Cobb-Douglas Function'’, Journal of Political Economy, 47, 1939, pp 761-785.
Chiang, Alpha C., Fumdamental Methods of Mathematical Economics, McGraw-Hill, New York, 1967.
Christensen, L., D. Jorgenson, and L. Lau, "Conjugate Duality and Transcendental Logarithmic Production Frontiers", University of Wisconsin, 1972.
__-_, 'Transcendental Logarithmic Production Frontiers", Review of Economics and Statistics, 54(1), 1973, pp 28-45.
Cobb, Charles W. and Douglas, Paul H., "A Theory of Production", American Economic Revier, 18, 1928, pp 139-165.
Dillon, J.L., The Analysis of Response in Crop and Livestock Production, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 1.
Douglas, P.H., "Cobb-Douglas Production Function Once Again: Its History, Its Testing and Some New Empirical Values", Journal of Political Economy, 84(5), 1976, pp 903-915.
Ferguson, C.E., The Neoclassical Theory of Production and Distribution Cambridge University Press, London, 1969, Ch. 4.
Frisch, R., Theory of Production, D. Reidel Publishing Co., Dordrecht (Holland), 1965, Ch. 5.
Halter, A.N., H.O. Carter and J.G. Hocking, "A Note on the Transcendental Production Function", Journal of Farm Economics, 39, 1957, pp 966-974.
Heady, Earl O., "Production Functions from a Random Sample of Farms", Journal of Farm Economics, 28, 1946, pp 989-1004.
Heady, E.O. and J.L. Dillon, Agricultural Production Functions, Iowa State University Press, Ames, lowa, 1961, Ch. 3.
Kmenta, J., "On Estimation of the CES Production Function", International Economic Review, 8, 1967, pp 180-189.

Menderhansen, Horst, "On the Significance of Professor Douglas's Production Function", Econometrica, 6, 1938, pp 143-1 53.
Nerlove, M., Estimation and Identification of Cobb-Douglas Production Functions, Rand McNally and Company, Chicago, 1965.
Reder, M.W., "An Alternative Interpretation of the Cobb-Douglas Production Function", Econometrica, 11, 1943, pp 259-264.
Revankar, iv.S., "A Class of Variable Elasticity of Substitution Production Functions", Econometrica, 39(1), 1971, pp 61-71.
Sato, R. and R.F. Hoffman, "Production Functions with Variable Elasticity of Factor Substitution: Some Analysis and Testing", Review of Economics and Statistics, 50(4), 1968, pp 453-460.
Spillman, W.J., "Application of the Law of Diminishing Returns to Some Fertilizer and Feed Data", Journal of Farm Economics, 5, 1923, pp 36-52.
Ulveling, E.F. and L.B. Fletcher, 'A Cobb-Douglas Production Function with Variable Returns to Scale", American Journal of Agricultural Economics, 52(2), 1970, pp 322-326.
Uzawa, H., "Production Function with Constant Elasticities of Substitution", Review of Economic Studies, 29, 1962, pp 291-299.
Zellner, A. and N. Revankar, 'Generalized Production Functions', Review' of Economic Studies, 36, 1969, pp 241-250.

تــابـــع ســـــــود

با توسعه تئورى دوگانه درباره توابع توليد، سود و هزينه، روشهاى بسيار مؤثرى در در

 رياضى نسبتاً مشكل آن است. بنابراين، اقتصاددانان كثشاورزى دريافتند كه استفاده از از فوايد كاربرد عملى اين بيشر فتها بسيار دشوار است.

 شرايط اقليمى و عوامل اجتماعى نيز نشان مىدهد. يإرامترها اطلاعات موجود در تابع توليد است. تحت شرايط معين، يكك تابع سود يا هزينه بطور بیىنظير

 اوليه يا مسأله ثانويه استفاده نمود. در حل مسأله برنامهريزى خطى اغلب اين اين شـيـيوه مـورد

استفاده قرار مىگيرد، يعنى حل مسأله اوليه بوسيله حل مسأله ثانويه آن.

مزاياى تئورى دوتانه'

بعضى از فو ايد استفاده از تئورى دوگانه بين توابع توليد و سود عبار تند از : اـ محقق نياز به فكر كردن درباره شكل تبعى خاص تابع توليد ندارد. Xi بصورت برونزا مورد برر سى قرار مىگیرند. بعبارت ديگر، فقط متغير هاى برونزا هستند كه
 بطور همز مان بوسيله قيمت نهادهها تعيين مىگر دنل. بنابراين به جاى يكـ مدل مدل ساده معادله، يك سيستم معادلات همز مان ' براثى بر سیى پديده اقتصاد واقعى داراى دقت بيشترى است، روش تابع سود مؤيد اين اصلاح و ترقى است. از طرف ديگر در روش تخمين تابع توليد، مقادير سمت راست معادله فقط شامل متغير هاى مستقل نمىگردد، بـلكه شــامل مستغيرهاى وابسته بسيارى نيز مىباشد؛ مانند نهادههاى كود، آبيارى و كارگر كه همراه با ستاده بوسيله تصميمگيرنده تعيين مىگردند. لذا در اين شيوه محاسبه توابع توليد، اينگونه عناصر، جزء ويزگيهاى نامطلوب محسوب مى گردند. لككن تا وقتيكه اين امكان وجود دارد كـه تـمامى نـى نهادهها را به ثابت و متغير دستهبندى نمائيم، اين ويزگگى نامطلوب با توابع سود تغيير نمئكنتند.

 تابع سود با استفاده از قيمتهاى نهاده متغيرهاى توضيحى (برونزا) صورت مىگيرد اين مسأله
 مىییرد.
F F استخراج توابع تقاخاى نهاده و عرضه محصول از تابع توليد برازش شده اغي اغلب

1. Usefulness of the theory of duality
2. Multicollineartiy
3. A system of equations approximates
4. Shephard's lemma

نرمال شده دست مىدهد (نسبت به اين نهاده)

$$
-\frac{\hat{c} \pi^{*}}{\partial p_{i}}=x i
$$

كه
وقتى توابع هزينه در حالت خاص توابع سود، مى توانند مورد تو جه قرار بگيرند كه ستاده به عنوان يك متغير توضيحى در ميان نهاده محسوب گردد. بايد تو جه داشت كه در اين مرحله، روش تابع سود هميشه بر روش تابع هز ينه مربوط به آن، مرجح است، زيرا در روش اخير، متغير هاى درونزا و برونزا با هم آميخته مى شوند.

فرض كنيد يك تابع توليد با m نهاده متغير : $Z_{1}, Z_{2}, \ldots ., Z_{m}$

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)
$$

 رامى توان اينگونه نوشت :

$$
\pi^{\prime}=p_{y} f\left(x_{1}, x_{2}, \ldots, x_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)-\sum_{i=1}^{m} p_{i} x_{t}
$$

[^35]براى حدا كثرنمودن ' ${ }^{\prime}$ ر كو تاه مدت، مشتقات جز ئى مرتبه اول را نسبت به نهادههاى متغير گر فته و سيس آنها را مساوى باصفر قرار مىدهيم. بدين ترتيب مشتقات جزئى بدست آمده از رابطه (ه -

$$
\frac{\partial \pi^{\prime}}{\partial x_{i}}=p_{y} f_{i}=p_{l}
$$

كه
 مى توان نوشت :

$$
p_{y} \frac{\partial y}{\partial x_{i}}=p_{i} \quad \text { or } \quad \frac{\partial y}{\partial x_{i}}=\frac{p_{i}}{p_{y}^{\prime}}, \quad i=1,2, \ldots, m
$$

بدين ترتيب در اينجا m معادله همزمان با m مجهول وجود دارد، كه بوسيله حل آن

$$
\begin{align*}
& \text { مى توان مقادير بهينه نهاده } \\
& x_{i}^{*}=x_{i}^{*}\left(p_{y}, p_{1}, p_{2}, \ldots, p_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right), \\
& i=1,2, \ldots, m
\end{align*}
$$

بيان شده است، بدست آورد. رابطه (ه - 7) ، تابع تقاضا براى نهادهُ متغير iرا نشان مىدهد. با جانشين نمودن توابع تقاضا داده شده بو سيله (ه - ا) در رابطه (ه -

$$
\pi^{\prime *}=p_{y} f\left(x_{i}^{*}, x_{2}^{*}, \ldots x_{m}^{*} ; z_{1}, z_{2}, \ldots, z_{n}\right)^{\prime} \sum_{i=1}^{m} p_{i} x_{i}^{*} \quad(\vee-\Delta)
$$

كه
 قيمتهاى ستاده و نهادههاى متغير و مقادير نهاده ثابت است. بنابراين براى تإع سود داريم :

$$
\pi^{\prime *}=\pi^{*}\left(p_{y}, p_{1}, p_{2}, \ldots, p_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)
$$

محققان شكل اصلاح شده اين تابع را توسعه دادند، كه به تابع سود نرمال شده موسوم

است و از نقطهنظر اقتصادسنجى ثابت گرديله كه استفاده از اين تابع آسانتر مىباشد. دليل اين مطلب از اينجا ناشى مىگردد كه اين شكل از تابع سود تعلاد متغيرهاى توضيحى را تا حد يك متغير كاهش داده و دامنه انتخاب را براى شكل تابعى گسترش مىدهل. يـعنى هـنگام استفاده از تابع سود نرمال شده، مججور نيستيم كه دامنه انتخاب را فقط به شكلهاى تابعى كه

همگگ از درجه يكك است محدود سازيم.

ه- "تابع سود نرمال شلده
اگگر هر دو طرف رابطه (ه سود نهادههاى متغير (xí) بدون تغيير باقى مى مانند. تقسيم طرفين معادله بو سيله مقدار ثابتى صورت مى گيرد كه در اينجا قيمت ستادها Py مورد نظر است. بدين ترتيب رابطه (ه شكل داده بطوريكه :

$$
\begin{aligned}
& \frac{\pi^{\prime}}{p_{y}}=\pi=f\left(x_{1}, x_{2}, \ldots, x_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)-\frac{1}{p_{y}} \sum_{i=1}^{m_{i}} p_{i} x_{i}(9-\Delta) \\
& \text { اگگ, } \\
& \text { اين چنين نوشت : } \\
& \frac{\pi^{\prime}}{p_{y}}=\pi=f\left(x_{1}, x_{2}, \ldots, x_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)-\sum_{i=1}^{m} r_{i} x_{i}(1 \circ-\Delta)
\end{aligned}
$$

تو جه كنيد كه π در روابط ((- 9) و (قيمتهاى نسبى نهاده مىباشد بر خلاف تابع سودى كه مربوط به قيمتهاى واقعى نهاده و قيمت ستاده است. استخراج معادلات تقاضاى نهاده متغير (ه-7) از رابسطه (ه مشابه با همين شيوه است. بطوريكه معادلات تقاضاى عامل متغير را از رابطه (هـ ـ ه ا مى توان بدست آورد، كه در اين روش نيز قيمتهاى نسبى مورد استفاده قرار گرفتهاند. اين چينين معادلات تقاضا وقتى در رابطه (ه - ه ا) جانشين مىگردند، تابع سود نرمال شده بدست مى آيد.

$$
\pi^{*}=\pi^{*}\left(r_{1}, r_{2}, \ldots, r_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)
$$

(f-@ا استخراج توابع عرضه ستاده و تقاضاى عامل از تابع سود

 هابرجاست.

مى توان بدست آورد.

$$
\begin{gather*}
-\frac{\partial \pi^{*}}{\partial r_{i}}=x_{i}^{*}=x_{i}^{*}\left(r_{1}, r_{2}, \ldots, r_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right) \\
i=1,2, \ldots, m
\end{gather*}
$$

 و CES
 مى تواند پـديد آيد.
 بر سى كنيه. باگرفتن مشتق جزئى مرتبه اول از سود (است، نسبت به

$$
\frac{\partial \pi^{\prime *}}{\partial p_{y}}=y^{*}=y^{*}\left(p_{y}, p_{1}, p_{2}, \ldots, p_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right) \quad(\mid r-\Delta)
$$

معادله عرضه ستاده نيز از تابع سود نرمال شده استخران استخراج گردد.

[^36]رابطه دوگانه مهم ديگرى كه مورد نياز است عبارتست از :

$$
\frac{\partial \pi^{\prime} *}{\partial z_{i}}=\frac{\partial y}{\partial z_{i}}
$$

مفهوم اين رابطه عبارتست از اينكه توليد نهائى عامل ثابت i i ، بوسيله جمله سـمت

 تابع سود نرمال برازش شده هبرآورد نمايده

 (Z) وجود دارد، اين چخنين تابع توليدى را مى توان اينگونه نوشت :

$$
y=x^{a} z^{b}
$$

 ثابت zادغام شده است. حال كارفر ماي اقتصادى قصد دارد در زمان كو كو تان ماه مدت كه بعضى از

$$
\pi^{\prime}=p_{y} y-p_{1} x
$$

خو اهيم داشت :

$$
\frac{\pi^{\prime}}{p_{y}}=y-\left(p_{1} / p_{y}\right) . x
$$

ا

$$
\pi=y-r x
$$

در اينجا جاننين نمودن مقدار yاز

$$
\begin{align*}
& \pi=x^{a} z^{b}-r x \\
& \text { اگگ, } \\
& (Y \circ-\Delta) \\
& \pi=A x^{a}-r x
\end{align*}
$$

تبديل مى
از رابطه (ه - Y०) ، نسبت به X مشتق مرتبه اول گرفته و مساوى با صفر قرار مىدهيم اين يكك شرط ضرورى برایى حدا كثر نمودن سود نرمال شده است. بنابراين

$$
\frac{d \pi}{d x}=A a x^{a-1}-r=0
$$

 ميتوان بدست آورد.

$$
\begin{align*}
& x^{*}=\left\{A^{-1}\left(\frac{r}{a}\right)\right\}^{1 /(a-1)}(Y Y-\Delta) \\
& x^{*}=\left(A^{-1}\right)^{1 /(a-1)}\left(\frac{r}{a}\right)^{1 /(a-1)}
\end{align*}
$$

با جانشين نمودن مقدار مى.باشد، تابع عرضه ستاده بدست مى Tيد.

$$
y^{*}=A^{-1(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}
$$

با جانشينى روابط ((Y-
 بدست آمده عبارتست از :

$$
\pi^{*}=A^{-1 /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}-r\left(A^{-1}\right)^{1 /(a-1)}\left(\frac{r}{a}\right)^{1 /(a-1)}
$$

$$
\begin{align*}
& \pi^{*}=A^{-1 ;(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}-a\left(\frac{r}{a}\right)\left(A^{-1}\right)^{1 /(a-1)}\left(\frac{r}{a}\right)^{1 /(a-1)} \\
& \pi^{*}=A^{-1 /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}-a(A)^{-1 /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)} \\
& \pi^{*}=(1-a) A^{-1 /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}
\end{align*}
$$

با جانشين نمودن

$$
\begin{equation*}
\pi^{*}=(1-a) z^{-b /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)} \tag{7}
\end{equation*}
$$

$$
\text { - است } \frac{\partial \pi^{*}}{\partial r}=x^{*}
$$

بيائيد مجدداً چگونگگى استخراج قيمت سايهاى عامل ثابت را مورد ارزيابى قـرار
 بطوريكه:

$$
\frac{\partial y}{\partial z}=b x^{a} z^{b-1}
$$

با جانتينى مقدار بهينه نهاده متغير :

$$
x^{*}=z^{-b /(a-1)}\left(\frac{r}{a}\right)^{1 /(a-1)}
$$

در رابطه ((YV-ه) ، عبارت زير برای توليد نهايى بدست مى آيد.

$$
\frac{\partial y}{\partial z}=b z^{(1-a-b) /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}
$$

كه دقيقاً برابر با همان رابطه بدست Tمده بوسيله مشتق مر تبه اول تابع سود (ه - - Y) نسبت به Zاست، كه عبارتست از :

$$
\frac{\partial \pi^{*}}{\partial z}=b z^{(1-a-b) /(a-1)}\left(\frac{r}{a}\right)^{a /(a-1)}=\frac{\dot{c} y}{\dot{c} z}
$$

ه- ا ار تباط يكك به يكك يين توابع توليد و سود و محدوديتهاى نظرى

وقتى تابع توليد، بسيار يـيحيده است، تابع سود، مفيدتر خواهلد بود. مى توان شكـل مناسب تابع سود را از نظر اقتصادسنجى به گونهاى انتخاب نمو كه اطمينان دهل كه تابع توليد

 نمىباشد. شرايط زير بر فرآيند توليد، ($z_{i} x_{i}$ (x_{i} (1) تابع توليددر و يكبار در
(Y) تابع توليد در (Y و

$$
\begin{aligned}
& \frac{\partial y}{\partial x_{i}}>0, \quad \frac{\partial y}{\partial z_{i}}>0 \quad \lim _{x_{1} \rightarrow 0} \frac{\partial f}{\partial x_{i}} \rightarrow \infty \\
& x_{i}, i=1,2, \ldots, m, z_{i}, i=1,2, \ldots, n \text { برا } \\
& \text { (r) تابع توليد در ا كيداً مقعر است }
\end{aligned}
$$

($y=f\left(x_{1}, x_{2}, \ldots x_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)(\boldsymbol{F})$ است، بنابراين استفاده از هر مجموعه متناهى مقادير نهادهها، يكك سطح مححدود سـتاده را ايجاد مىنمايد.
(
فروض ياد شده، تضمين مىكنند كه در درون ناحيه غير صفر، راه حل بهيغx يگانهاىى

1. Theory of one - To - one correspondence .

براى مسأله حدا كثر سازى سودبه دست آيد.
متناظر باهر تابع توليد، تــــا (ه) را بــــرآورده هـــــازد، يك تــــا و وجود داردكه محدوديتهاى زير رابرآورده $\pi^{*}=\pi^{*}\left(r_{1}, r_{2}, \ldots r_{m} ; z_{1}, z_{2}, \ldots, z_{n}\right)$ مى سازد و برعكس. بر اين اساس، تابع سود نرمال شده ه :
 ، z_{i}

$$
\begin{aligned}
& \text { (r) } \\
& \text { (}(\boldsymbol{\text { (})}
\end{aligned}
$$

(F) برای تمامى قيمتهاى نرمال شده متناهى، محلودو است (F)

 مراحل توليد هابرجا باشد.

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i} \partial x_{j}} & =\frac{\partial f}{\partial x_{j} \partial x_{i}} \\
& : \quad j \text { هو } \\
\frac{\partial \pi^{*}}{\partial r_{i} \partial r_{j}} & =\frac{\partial \pi^{*}}{\partial r_{j} \partial r_{i}}
\end{aligned}
$$

تمامى i

ه- $\begin{gathered}\text { - }\end{gathered}$
عليرغم قابليت انعطاف بسيار زياد روش تابع سود، ولى اين روش از بعضى مسائل و

منابع براى مطالعه ييشتر

Binswanger, H.P.. " A Cost Function Approach to the Measurement of Factor Demand Elasticities and Elasticities of Substitution", American Journal of Agricultural Economics, 56(2), 1974, pp 377-386.
.-......."The Measurement of Technical Change Biases with Many Factors of Production", American Economic Review, 64(6), 1974, pp 964-976.
-_-_The Use of Duality between Production, Profit and Cost Functions in Applied Econometric Research: A Didactic Note, Occasional Paper No. 10, Economics Department, ICRISAT, Hyderabad, 1975.
Dicwert. W.E., "Functional Forms for Profit and Transformation Funcions". Journal of Economic Theory, 6(3), 1973, pp 284-316.
Fuss, Melvyn and Daniel McFadden (eds.), Production Economics: A Dual Approach to Theory and Applications, Vol. I, The Theory of Production, North-Holland. Amsterdam, 1978.
Law, L.J. and P.A. Yotopoulos, "A Test of Relative Efficiency and Application to Indian Agriculture", American Economic Review, 61(2), 1971, pp 94-109.
——, "Profit, Supply and Factor Demand Functions", American Journal of Agricultural Economics, 54(1), 1972, pp 11. 18.
Shephard. R.W.. Cost and Production Functions, Princeton University Press, Princeton, 1953.
Sidhu, S.S.. "Relative Efficiency in Wheat Production in the Indian Punjab", American Economic Review, 64(4), 1974, pp 742-751.
Yotopoulos, P.A. and L.J. Lati, "A Test of Relative Economic Efficiency: Some Further Results", American Economic Review, 63(1), 1973, pp 214-223.

فصل ششـــم

بهينهسازى بااطلاعاتكامل : تحليل بدون زمان

در اين فصل، روش بهينهسازى، بدون كتترل نهاداداى و با كتترل نهادهایى، به تفصيل

بعدى زمان و ريسك را نيز وارد خو اهيمركرد.
§- ا بهينهسازی بدونكتترل نهادهاى

 نامقيد يا حدا كثر سازى نامقيد سود مى الـياشد

 شروع كنيم، آنگاه به تدريج آن را بسط داده تا حند ين نها نـاده و ستاده را دربر بغيرد ـ حالت حند جوابی.

تكنههاده متغير
فرض كنيد تابع توليد در اين حالت خنين باشد :

$$
\begin{equation*}
y=f\left(x_{1}\right) \tag{1-7}
\end{equation*}
$$

آنگاه معادله سود مربوط به رابطه (7 - ا) حنين خواهل بود :

$$
\begin{equation*}
\pi=p_{y} y-p_{1} x_{1} \tag{Y-7}
\end{equation*}
$$

كه در آن كه اين قيمتها مثبت باشند، يعنى مى دهد. مقدار مشتق مرتبه اول از π نسبت به

$$
\frac{d \pi}{d x_{1}}=p_{y}\left(d y / d x_{1}\right)-p_{1}
$$

 مقدار نهاده، حل مىكنيم. بنابراين داريم :

$$
\begin{aligned}
p_{y}\left(d y / d x_{1}\right)-p_{1} & =0 \\
d y / d x_{1} & =p_{1} / p_{y}
\end{aligned}
$$

كه شرط لازم براى حدا كثرسازى سود است. شرط مرتبه دوم يا شرط كافى بـراى
حدا كثر سازى سود، يعنى :

$$
d^{2} \pi / d x_{1}^{2}<0
$$

وقتى تأمين مىشود كه توليد نهايى نهاده برابر با نسبت قيمت
 منحنى تابع توليد (Y $y=f\left(x_{1}\right)$ مماس مى بنابراين مقادير بهينه اكنون سود برابر است با .

$$
\pi=p_{y}(O C)
$$

$$
\tan \theta=\frac{A A^{\prime}}{C A^{\prime}}=\frac{p_{1}}{p_{y}^{\prime}}
$$

$$
\frac{C D}{O B}=\frac{p_{1}}{p_{y}}
$$

$$
\begin{equation*}
p_{y}(C D)=p_{1}(O B) \tag{7-7}
\end{equation*}
$$

$$
\begin{aligned}
& \text { اكنون با اين اطالاعات مى تواذ نتيجه بگيريم كه } \\
& \pi=p_{y}(O D)-p_{1}(O B) \\
& =p_{y}(O D)-p_{y}(C D)=p_{y}(O D-C D)=p_{y}(O C)
\end{aligned}
$$

دو نهاده متغير
در اين حالت تابع توليد را مى توان اين گونه نوشت :

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}\right) \tag{V-7}
\end{equation*}
$$

$$
\pi=p_{y} y-\left(p_{1} x_{1}+p_{2} x_{2}\right)
$$

 نهادههاى اين دستغاه معادلات را حل ميكنيم.

$$
\begin{align*}
& \frac{\partial \pi}{\partial x_{1}}=p_{y} \frac{\partial y}{\partial x_{1}}-p_{1}=0 \tag{9-7}\\
& \frac{\partial \pi}{\partial x_{2}}=p_{y} \frac{\partial y}{\partial x_{2}}-p_{2}=0 \tag{10-7}
\end{align*}
$$

روابط (7 - 9) و (7 - ه) شرايط لازم براى حداكثر سازى سود هستند. اين شرايط را

$$
\begin{aligned}
& p_{y} \frac{\partial y}{\partial x_{1}}=p_{1} \quad: \quad \text { اين گونه نيز مى توان بيان كرد } \\
& p_{y} \frac{\partial y}{\partial x_{2}}=p_{2}
\end{aligned}
$$

مشتقات جزئى تابع توليد نسبت به نهاددهاى

 (i=1, 2) X_{i}
 $\frac{\partial^{2} \pi}{\partial x_{1}^{2}}<0, \quad \frac{\partial^{2} \pi}{\partial x_{2}^{2}}<0$

$$
\left|\begin{array}{cc}
\frac{\partial^{2} \pi}{\partial x_{1}^{2}} & \frac{\hat{\partial}^{2} \pi}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} \pi}{\partial x_{2} \partial x_{1}} & \frac{\hat{c}^{2} \pi}{\partial x_{2}^{2}}
\end{array}\right|>0
$$

به طور خودكار به خاطر فرض بازده نزولى تكت بك عو عوامل و فرض بازده نزولى به مقياس، بر آورده مى شوند.

$$
\begin{equation*}
\partial y / \partial x_{1}=p_{1} / p_{y} \tag{11-7}
\end{equation*}
$$

$$
\begin{equation*}
\partial y / \partial x_{2}=p_{2} / p_{y} \tag{1Y-7}
\end{equation*}
$$

 نسبت قيمت نهاده ـ ستاده باشد.
nنهادهمتغير
برایى بدست آوردن مجموعه
 دستگاه nمعادلهاى را همزمان حل كنيم :

$$
\begin{gather*}
\frac{\partial \pi}{\partial x_{i}}=p_{y} \frac{\partial y}{\partial x_{i}}-p_{i}=0, \quad i=1,2, \ldots, n \\
M P_{i}=\frac{p_{l}}{p_{y}}, \quad i=1,2, \ldots, n
\end{gather*}
$$

$$
V M P_{i}=p_{i}, \quad i=1,2, \ldots, n
$$

هاسخ چندگَانه :جندين نهاده و جندمحصول فرعى در يكکمحصول
توليد كننده اغلب به توليد همزمان جند ين ماند محصول مشغول است، مثلاً با استفاده از

 محصول معين، به صورت زير است : مى توان m تابع توليد به صورت زين

$$
\begin{equation*}
y_{j}=f_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad j=1,2, \ldots, m \tag{10-7}
\end{equation*}
$$

كه محصول فرعى در يك محصول اصلى، مىباشد. تابع هدف متناظر با با فرا آيند توليدى كه با (1ه- اه مشخص شده است، به صورت زير مى باشد :

$$
\begin{equation*}
\pi=\sum_{j=1}^{m} p_{y_{j}} y_{j}-\sum_{i=1}^{n} p_{i} x_{i} \tag{17-7}
\end{equation*}
$$

با اين فرض كه شرط مر تبه دوم برآورده شده باشـد، مقادير نهاددهاى حدا حـا كثر سازنده سود را مى توان با حل n معادله همز مان زير، كهه از معادله اين معادلات جَنيناند :

$$
\begin{equation*}
\sum_{j=1}^{m} p_{y_{j}}\left(\partial y_{j} / \partial x_{i}\right)-p_{i}=0, \quad j=1,2, \ldots, m \tag{1v-7}
\end{equation*}
$$

ياسخ چندكَانه :جندين نهادهوجندينمحصول

 نهاده را بايد بطور همزمان به هند ين محصول اختصاص دار داد و اين تخصيص با توجه به يك يك هدف معين؛ مثل حداكثر سازى سوده، باشد.

$$
\begin{align*}
& \text { فرض كنيد فرايند توليد با mتابع توليد بيان شُده باشد : } \\
& y_{1}=f_{1}\left(x_{11}, x_{21}, \ldots, x_{n 1}\right) \\
& y_{2}=f_{2}\left(x_{12}, x_{22}, \ldots, x_{n 2}\right) \\
& \text { - . . . } \\
& y_{m}^{\prime}=f_{m}\left(x_{1 m n}, x_{2 m}, \ldots x_{n m}\right)
\end{align*}
$$

كه كه
 m تابع را مى توان به شكل ضمنى نيز نوشت :

$$
f\left(y_{1}, y_{2}, \ldots, y_{m} ; x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

تابع هدف نامقيد كل، در اين حالت عبارت است از :

$$
\begin{equation*}
\pi=\sum_{j=1}^{m} \pi_{j} \tag{19-7}
\end{equation*}
$$

كه
آذجا كه فرايندهاى توليد مربوط به محصولات مختلف، مستقل مى باشنـد.

$$
\max \pi=\sum_{j=1}^{m}\left(\max \pi_{j}\right)
$$

بنابراين شرايط حدا كثُر سازى سود در اين حالت زمانى محقق مى شود كه هر فرايند
 بهينه برخى از

$$
\partial y_{j} / \partial x_{i}=p_{i} / p_{y_{j}}, \quad i=1,2, \ldots, n ; j=1,2, \ldots, m\left(Y_{\mid-\eta}\right)
$$

به زبان ديگر، با حل مستقل هر كدام از اين m مجموعه n معادلهانى، مى توان به m
 يافت.

فروض بازده نهايى نزولى و بازده كاهنده به مقياس اطمينان مىدهند كه شرايط كافى برایى حدا كثر سازى سود بر آورده شده است.
با بازنويسى (Y) - Y) ، داريم :

$$
\left\{\left(M P_{i j}\right) p_{y_{j}}\right\} / p_{l}=1, \quad i=1,2, \ldots, n ; j=1,2, \ldots, m\left(r r_{-7}\right)
$$

بنابراين، ارزش توليد نهايى iامين عامل بكار رفته براى توليد زامين محصول، بايد با قيمت هر واحد iامين محصول، برابر باشد.
 عامل ـ عامل و محصول ـ محصول، برایى حدا كثر سازى سود، دست يافت :

$$
M P_{i j}=p_{i} / p_{y j} \text { (}
$$

$$
R T S_{i k}=\frac{M P_{i j}}{M P P_{k j}}=\frac{p_{i}}{p_{k}}
$$

$$
R P T_{j h}=\frac{M P_{i j}}{M P_{i / h}}=\frac{p_{y_{h}}}{p_{y_{j}}}
$$

كه عامل أه ، مى مباشد.
§- \ddagger بهينهسازی مقيد

 محدوديتها را به عنوان تساويهايى در نظر مى دو گونه از محلدوديتهايى كه بر تابع هدف بر برقرار مى شو ده، عبار تند از از :
 باشد و هدف آن است كه مجموعهاى از هزينه نهادهها، يعنى آنـي نهادهما برای مقدار ستاده معينى، بيدا مى شود. (Y) محدوديت مخارج ثابت. گاهى ممكن است سرمايه در گردش برایى خريد نهادهادها ثابت باشد، مثلاً C دست آيد. اين روش بهينهسازى كمكك مىكند تا آن مقدارى از ستاده يا ستادهها كه حـدا كـا كثر

محدوديت ستاده هدف

در اين نوع محدوديت، از سه حالت جدا گانه مى توان گفتگگو كرد: ـ
$y_{k}^{o}{ }_{k} m_{-}$ $\left.\sum_{k=1}^{m} y_{k} p_{y k}=R\right)$ محصول $n-r$
اكنون به برزسى هر كدام از اين مواد مى پردازيـم :

تكيحصول با ستاده ثابت . فرض كنيد تابع توليد در اين حالت، چنين باشد

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{ץ7-7}
\end{equation*}
$$

$$
\begin{equation*}
\pi=p_{y} y-\Sigma_{p} x_{i}+\lambda\left(y-y^{0}\right) \tag{YV-7}
\end{equation*}
$$

كه גضريب لاگرانزّ نامعين است. برای حدا كثرسازى سود، تمامى 1+n+ مشتق مرتبه اول π نسبت به

$$
\begin{align*}
& \frac{\partial \pi}{\partial x_{1}}=p_{y}\left(\partial y / \partial x_{1}\right)-p_{1}+\lambda\left(\partial y / \partial x_{1}\right)=0 \\
& \frac{\partial \pi}{\hat{c} x_{2}}=p_{y}\left(\partial y / \partial x_{2}\right)-p_{2}+\lambda\left(\partial y / \partial x_{2}\right)=0 \\
& \frac{\partial \dot{\pi}}{\partial x_{n}}=p_{y}\left(\partial y / \partial x_{n}\right)-p_{n}+\lambda\left(\partial y / \partial x_{n}\right)=0 \\
& \frac{\partial \pi}{\partial \lambda}=y-y^{0}=0 \tag{Y人-7}
\end{align*}
$$

$$
\begin{align*}
& p_{1}\left(\partial x_{1} / \partial y\right)-p_{y}= \\
& p_{2}\left(\partial x_{2} / \partial y\right)-p_{y}= \tag{59-7}\\
& \cdot \\
& \cdot \\
& \cdot \\
& \cdot \\
& p_{n}\left(\partial x_{n} / \partial y\right)- \\
& \cdot \\
& p_{y}=
\end{align*}
$$

$$
\begin{gather*}
\left(\partial x_{i} / \partial y\right) /\left(\partial x_{j} / \partial y_{j}\right)=p_{j} / p_{i} \tag{0}\\
M P_{j} / M P_{i}=p_{j} / p_{i}, \quad i \neq j
\end{gather*}
$$

$$
R T S_{j i}=p_{j} / p_{i}
$$

اين n-nمعادله همراه با يكك معادله توليد همسان حاصل از آخرين معادله در (Y (Y)
، يعنى

$$
x_{1}=f\left(x_{2}, x_{3}, \ldots, x_{n}, y^{0}\right)
$$

 لازم براى توليد ستاده هدف

باشد. اين، بلدين مفهوم است كه يكك يا چند متغير بايد مقدار صفر داشته باشند. در اين حالت، وقتى برخى خواهد بود.

حل مجموعه معادلات (ף -

m محصول با مقادير ستادهاى ثابت ${ }^{\text {F }}$. فرض كنيد m تابع توليد مستقل وجود دارد :

$$
y_{k}^{\prime}=f\left(x_{1 k}, x_{2 k}, \ldots, x_{n k}\right), \quad k=1,2, \ldots, m
$$

و مححدويتهاى ستادایى حنيناند :

$$
y_{k}=y_{k}^{0}, \quad k=1,2, \ldots, m
$$

كه ת π
 مى آيد. با اين فرض كه شر ط كافى غير صفر بودن MP ها بر آورده شده ها باشد. حلى جدا كا گانه
 هزينه، به دست میدهد.
m محصول ، با درآمد كل ثابت (m

$$
\pi=\sum_{k} p_{s_{k}} y_{k}-\sum_{i k} \sum_{k} p_{i x_{i k}}+\lambda\left(\sum_{k} p_{y_{k}} y_{k}-R\right)
$$

 معادله به دست مى آوريم؛ يعنى $m n+1$

$$
\begin{align*}
& p_{y_{k}}\left(\partial_{y_{k}} / \partial x_{i k}\right)-p_{i}+\lambda p_{y_{k}}\left(\partial y_{k} / \partial x_{i k}\right)=0 \\
& \Sigma p_{y_{k}} y_{k}-R=0
\end{align*}
$$

مى توان
 به دست آورد.

 آيد. اين چهار مجموعه شرايط مرتبه اول عبار تند از : (1) معادلات مكان هندسى درآمدهاى يكسان :

$$
y_{u}=\left(R / p_{y_{u}}\right)-\Sigma\left\{\left(p_{y_{k}} / p_{y_{u}}\right) y_{k}\right\}, \quad k=1,2, \ldots, m ; k \neq u^{\left(\mu q_{-}\right)}
$$

 (

$$
R P T_{r k}=p_{j^{\prime}} / p_{s_{k}}, \quad k=1,2, \ldots, m ; k \neq v
$$

كه
 (r) معادلات (n-1) رابطه عامل ـعامل :

$$
R T S_{w j}=p_{w} / p_{j}, \quad j=1,2, \ldots, n ; j \neq w
$$

(F1-7) ، معادلات خطوط شيب همسان است، كه در فضاى نـهادهاى، مسـيرهاى
توسعه حداقل كننده هزينه را نمايش مى دهند.
 $p_{y_{1}}\left(M P_{11}\right) / p_{1}=p_{y_{k}}\left(M P_{j k}\right) / p_{j}$,

$$
\begin{equation*}
j=2,3, \ldots, n ; k=2,3, \ldots, m \tag{FY-Y}
\end{equation*}
$$

 مفهوم است كه نسبت ارزش توليد نهايى هر عامل (VMP) در توليد هر محصول، به قيمت آن نهاده، بايد برایى همه عوامل و محصصولات، برابر باشد.

محدوديتمخارج ثابت

 ثابت را نقض نكند.
در اين مورد نيز، از سه امكان منطقى، به صورت زير نري ، مى توان كفنتگو كرد: 1-تك محصول، باصر ف وجوه محدود
m-r

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

و وجوه در دسترس براى خريد نهادهها، محدود به مقدار C باشد．بنابراين مـعادله
هزينه حنين است ：

$$
\begin{equation*}
C=p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n} \tag{FF-7}
\end{equation*}
$$

در（ff－ף）
مكى X_{n}

$$
\pi=p_{y} y-\sum_{i=1}^{n} p_{i} x_{i}+\lambda\left(\Sigma p_{i} x_{i}-C\right)
$$

积

$$
\begin{aligned}
& p_{y}\left(\partial y / \partial x_{1}\right)-p_{1}+\lambda p_{1}= \\
& p_{y}\left(\partial y / \partial x_{2}\right)-p_{2}+\lambda p_{2}= \\
& \cdot \\
& \cdot \\
& \cdot \\
& \cdot \\
& p_{y}(\partial y \cdot \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.x_{n}\right)- \\
& p_{n}+\dot{\lambda} p_{n}=
\end{aligned}
$$

مىدهيم. يعنى :

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} x_{i}-C=0 \tag{7-7.ب}
\end{equation*}
$$

سيستم nمعادلهأى（7 ـ ج．الف）را مىتوان حل كرد تا λ حذف شود و 1－n معادله

$$
-\partial x_{i} / \partial x_{j}=p_{j} / p_{i}
$$

$$
\begin{equation*}
R T S_{j i}=p_{j} / p_{i}, \quad i, j=1,2, \ldots, n ; i \neq j \tag{FV-7}
\end{equation*}
$$

معادله (7 ـ 7 7 ب. ب) را مى توان بازنويسى كرد تا معادله هم هزينه بدست آيل :

$$
x_{1}=C / p_{1}-\sum_{i=2}^{n}\left(p_{i} / p_{1}\right) x_{i}
$$

بنابراين، (FV-Y) و (FA-7) مجموعهاى از n معادله همز مان را تشكيل مىدهند كه مى توان آنها را براى ييداكردن مقادير nنهادها كی مجموع هزينه آنها Cاست، حل كرد. اين نهادهها بالاترين محصولى كه مى توان با توجه به هزينه C توليد كرد را بدست مىدهند. اين مقادير نهادهها، با تو جه به مقدار معينى وجوهه، و با فرض معمول رقابت كامل، سود را نيز حداكثر مىكنند.
براي كتترل اين كه آيـا سـودهاى بـدست Tامــده، بـالاترين مـقدار هسـتند يـا نـه،

$$
\text { نسبت } \frac{p_{y} M P_{i}}{P_{i}}
$$

$$
\frac{p_{y} M P_{i}}{p_{i}}<1
$$

بدين مفهوم است كه حداكثر مقيد، وجوه بيشترى نسبت به راه حل نامقيد بـهـ كـار
مىگيرد.

در اين حالت، استفاده از روش بهينهسازى در شرايط مخارج ثابت، مناسبتى ندارد؛ زيرا اين محدوديت، اضافى است. هرچه مقدار مخارج، قلد تمندتر خو|هل بود، و بر عكس.
m محصهول، با صرف وجوه مححدود براى هر محصول . اين مسأله بهينهسازى، به شكل

$$
\begin{align*}
& y_{1}=f_{1}\left(x_{11}, x_{21}, \ldots, x_{n 1}\right) \\
& y_{2}=f_{2}\left(x_{12}, x_{22}, \ldots, x_{n 2}\right) \\
& \cdot \quad \cdot \quad \cdot \quad: \tag{fq-7}\\
& \cdot \quad! \\
& y_{m}=f_{m}\left(x_{1 m}, x_{2 m}, \ldots, x_{n m}\right) \\
& \sum\left(p_{i} x_{i r}\right)=C_{r}, \quad r=1,2, \ldots, m
\end{align*}
$$

 پيش تر توضيح داده شد، براى هر تابع توليد منفرد، بدست مى آيد.

ضمنى تابع توليد، به شكل كلى ترى درآورد. يعنى :

$$
f\left(y_{1}, y_{2}, \ldots, y_{m} ; x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

m محصول، با صرف وجوه محدود براى هــمه مـحصولات. در آن جـا، تـابع تـوليد
مى تواند به صورت زير باشل :

$$
y_{r}=f_{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad r=1,2, \ldots, m
$$

و تنها محدوديت موجودى سرمايه، چنين مىباشد :

$$
\sum_{i} \sum_{r} p_{i} x_{i r}=C
$$

$$
\pi=\sum_{r} p_{y_{r}} 1_{r}-\sum_{i} \sum_{r} p_{i-} x_{i r}+\lambda\left\{\sum_{i} \sum_{r}\left(p_{i} x_{i r}-C\right)\right\} \quad(\Delta Y-\eta)
$$

($i=1,2, \ldots, n ; r=1,2, \ldots, m$) ، $x_{i r}$ باكرفتن مشتقات مرتبه اول
و نسبت به גو مساوى صفر قراردادن هر كدام از اين mn+1 معادله ، خواهيم داشت:

$$
\begin{array}{rr}
p_{y,}\left(\partial y_{r} / \partial x_{i r}\right)-p_{i}+\lambda p_{i}=0, \quad r=1,2, \ldots, m(\Delta r-q) \\
\sum_{i} \sum_{r} p_{i} x_{i r}-C=0 & (\Delta r-q)
\end{array}
$$

גرا مى توان از (ף-

$$
\begin{align*}
& \left(p_{y_{1}} / p_{1}\right)\left(\partial y_{1} / \partial x_{11}\right)=\left(p_{y_{i}} / p_{i}\right)\left(\partial_{y_{r}} / \partial x_{i r}\right) \\
& i=2,3, \ldots, n ; r=1,2, \ldots, m
\end{align*}
$$

با بازنويسى (هF-ף) ، يكت معادله هم هزينه، به شكل زير، به دست مى آوريم :

$$
\begin{gather*}
x_{11}=C / p_{1}-\sum_{i} \sum_{r}\left\{\left(p_{i} / p_{1}\right) x_{i r}\right\} \\
i=2,3, \ldots, n ; r=1,2, \ldots, m
\end{gather*}
$$

حل
بدست مىدهد. محلدوديت مخارج كل تنها وتى مؤثر است كه

 اين راه حل را به صورت نمودارى نيز مىتوان دز نقطهالى كه.خطوط شـيبهمسان، نـقشه همهزينه را تطع مىكند، به دست آورد.

تمـريـــن

9-ا تابع واكنش مربوط بهكود شيميايى، برای بادام زمينى جنين است :

$$
y=1860+12.5 P-0.16 P^{2}
$$

 محاسبه كنيل :
(1) آن مقدارى از (Y) (Y) آندارى از p مكه سود را احداكثر مىكند و مقدار محصول مربوط به آن را،

(F) مبدست آوريد.
(ه) (تابع تقاضاى ايستاى معمولى را برایى pبدست آوريد.

$$
y=a o x_{1}^{a 1} x_{2}^{a 2} x_{3}^{a 3} \quad: \quad \text { §-؟ با توجه به تابع توليد زير }
$$

كه در آن وو
 (i=1,2,3) ، باشد، موارد زير را بدست آوريد :
 $\Sigma\left(p_{i} x_{i}\right)=C$ مقدار بهينه اقتصادى نهادهها را با محدوديت مخاري (Y)

$$
\begin{aligned}
& y=5.94 x_{1}^{0.28} x_{2}^{0.24} x_{3}^{0.2}
\end{aligned}
$$

كه y نشان دهندهُ ستاده سيبزمينى به تن و (بهتن)، كود (به روييه) و كار (به روپيه) مىباشند. مقادير بهينه اقتصادى نهادهها را، وتتى قيمت هر واحد بذر سيبزمينى 205 روييه در هر تن و مخارج تنها محدود است به 3000 روييه؛ به دست آوريد. آيا اين يكك مححوديت مؤثر است؟

$$
\begin{aligned}
& y_{s}=1939+40.2 n-0.233 n^{2} \\
& y_{L}=2264+45.5 n-0.266 n^{2}
\end{aligned}
$$

كه در آن زمين هاى رُسى مىباشل و n مقدار كود ازتى است كه در هر هكتار (به كيلوگرم) استفاده شده

است. قيمتهاى هر كيلوگرم گندم و ازت به ترتيب 1.53 روپيه و 4.82 روييه مى باشد. (1) مقدار ازت حدا كثر كننده محصول، و مقدار بهينةٔ اقتصادى ازت را رادر هر هكتار ،

براى زمين هاى ماسهالى و رسى بدست آوريل.
(Y) اگُ زمينهای مإسهاى و رسى، در يكى مزرعه خاص به تر تيب 10 و 15 هكتار

باشند، و صر ف هزينه برای ازت محدود به 7000 روپيه باشد، مقادير بهينه اقتصادى ازت را براى توليد گَندم بر روى هر كدام از انواع خا كك، محاسبه كنيد.
§-ه ديدگاه بسيار پذيرفته شدهاى مىگويد تخصيص منابع در كشاورزى سنتى بسيار ناكارا است. اين نتيجه گيرى تا چه حد ممكن است ناشى از حلقههاى آمارى و آزمونهاى غـلط فرضيهها باشد؟

TV-9 يا تخصيص منابع در كشاورزى آمريكا از تخصيص منابع در كشاورزى هند، متفاوت است؟ دلايل خود را بياوريد.

منابع براى مطالعه بيشتر

Chennareddy, V., "Production Efficiency in South Indian Agriculture", Journal of Farm Economics, 49(4), 1967, pp 816-820.
Dillon, J.L., The Analysis of Response in Crop and Livestock Production, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 2.
Heady, E.O. and John L. Dillon, Agricultural Production Functions, The Iowa State University Press. Ames, Iowa, 1961, Ch. 2.
Hopper, W.D., "Allocative Efficiency in a Traditional Agriculture", Journal of Farm Economics, 47(3), 1965, pp 611-624.
Krishna, Raj. "Some Production Functions for the Punjab", Indian Journal of Agricultural Economics, 19 (3 and 4), 1964, pp 87-97.
Rudra, A., "More on Returns to Scale in Indian Agriculture", Economic: and Political Weekly, 3(42), 1968., pp A33-A38.
Saini, G.R., "Resource-Use Efficiency in Agriculture", Indian Journal of Agricultural Economics. 24(2), 1969, pp 1-18.
Singh, J.P., "Resource Use, Farm Size and Returns to Scale in a Backward Agriculture", Indian Journal of Agricultural Economics, 30(2), 1975, pp 32-46.

فصل هفتـــــمـ

بهينهسازى در زمــــان

در فصل هاى بيشين، اثر زمان رابر تابع توليد و بر بهينهسازى نهادهمها در در فر آيند توليد،

 از محصولات و قيمتهال، صريحاً وارد شده است. بنابراين، رفتار بهيننهازی در در شرايط يويا
 زمان عمدتاً جهارگونه اثر بر توليد دارد :
 بنابراين زمان (t) به عنوان يكك نهاده متغير، در ميان ديگر نهادهها، در تابع توليد گنجانده مى شود، يعنى :

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \tag{1-V}
\end{equation*}
$$

 آشكار نباش.
 مثلاً ظرفيت يك قطعه زمين براى توليد محصولات، ممكن است در طول زمان افزايش يا
 كتترل و مهار شده باشد يا نه.
 محصول اثر بگذارد. بنابراين گاهى تابع توليد چنين است :

$$
\begin{equation*}
y=f(t) \tag{Y-V}
\end{equation*}
$$

در كتـاورزى، اين تجربه فراگيرى است كه محصول يكك كشت از الگوى كـاربرد
 كاشت داده شود يا در طول

 مىكند تا ستاده را در پايان همان دوره زمانى، توليد كند.

- - ا حداكثر سازى نامقيد سوث

در تحليل بدون زمان، حداكثرسازى سود يا بهينه سازى تخصيص نهادهها به يك يك يا حند محصول، مستلزم تحقق شرط زير است :

$$
M P_{i}=p_{i} / p_{y}
$$

$$
p_{y} M P_{i}=p_{i}
$$

ي

$$
\begin{equation*}
V M P_{i}=p_{i}=M F C_{i} \tag{V-r}
\end{equation*}
$$

كه هزينه عامل نهايى برایى iامين نهاده، مى
اين شرط اشاره به آن دارد كه استفاده از نهاده X در توليد ستاده Y بايد تا حـا

 يك تابع توليد وابسته به زمان مورد بر دسى قرار میى دهيميم.

يهينهسازى بدون ترجيحات زمانى

 فرا يند توليد وابسته به زمان چینين باشد :

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
x_{i}=f_{i}(t), \quad i=1,2, \ldots, n
$$

كه در آن، t t كوره بارورى 'است. برا'ى سادگى، باز فرض مى شو دكه نهادهها در Tغاز هر دورهٔ توليد به كار گرفته مى شوند و اين كه آنها بايد آثار ماندكًار بر توليد نداشته باشند. اين فر آيند توليد در طول زمان تكرار مى شود.
وقتى قيمت نهادهها و قيمت ستاده، ثابت فرض شده باشد، روش بهينه سازى بـراى نهادهها در هر دوره از طول ملت توليد؛ همانند بقيه دورههاست؛ حدا كثر سازى سو د كل در
 اگر سود در واحد زمان با توليد با F، تابع هدف نامقيد براى واحد زمان را مى توان چخنين نوشت:

$$
\begin{equation*}
\pi^{0}=\left(p_{y} y-\Sigma p_{i} x_{i}-F\right) / t \tag{7-V}
\end{equation*}
$$

بايد يادآورى كرد كه F/tدر اين جا، ديگر يك ثابت نيست، زيرا يكك متغير است. بنابراين، هز ينه نهادههاى ثابت را نمى توان آن گونه كه در تحليل بدون زمانـ ناديده گرفت. بدين ترتيب، اين نقطه اصلى عزيمت از هارحوهوب تحليل بدون زمان ان است. اكنون، با مشتقگيرى از (7-V) نسبت به

جملهها، خواهيم داشت :

$$
p_{y}\left(\hat{c}_{y} / \partial x_{i}\right)=p_{i}+\left\{\left(\partial_{t} / \partial x_{i}\right)\left(p_{y} y-\Sigma \rho_{i} x_{i}-F\right)\right\} / t \quad(V-V)
$$

$$
\begin{align*}
& \text { با قراردادن } \\
& \text { توليد هستند، مى توان (V-V) را اين گونه بازنويسى كرد : } \\
& \partial R / \partial x_{i}=\partial c / \partial x_{i}+\left(\partial t / \partial x_{i}\right) \pi^{0}
\end{align*}
$$

در (1) ، جمله سمت چجٍٍ مساوى، بيانگر MVPi و جمله سمت راستِ مساوى بيانگر هزينه عامل نهايى مربوط به نهاده است. بخش اول، يعنى مى توان آن را هزينه نهايى اصلى يكى واحد از زمان در دوره́ بعدى توليد، ضرب در زمان بنابراين، ورود زمان منجر به افزايش MFCمريوط به بـ نوبه خود مقدار بهينه نهادهها را در زمان، در مقايسه با مقاديرى كه از تحليل بدون زمان بان به دست مى آمل، كاهش مىدهد. بدين تر تيب، مجموعه مقادير بهينه نهادههاى متار متغير به وسيله

 مربوط به آن عامل نيز هست.

مثال . اثر زمان را بر بهينهسازى بدون هيجِّونه محدوديت و بــدون تـرجـيحات زمـانى، مى توان با بررسى اين تابع واكنش وابسته به زمان، نشان دان داد :

$$
y=2500+10 x_{1}-0.02 x_{1}^{2} \quad x_{1}=0.5 t
$$

 $x_{1}=250$ مساوى با 4250 باشد. براى اين فرآيند توليد، بدون ملاحظه زمان، ستاده حداكثر شده است و حدا كثر سود در 150 = 1 بدست آمده است. اگر (A-V) را برانى

 كنندهُ سود، مىشود.

بهينهسازى با ترجيحزمانى
ترجيحات زمانى، در آن بخثهايى از دنياى واقع كه با توليد سرو كار دارند، كاملاً
 به زمان، با وجود ترجيحات زمانى، بسط داده شود. اگر فرآيند توليدى كه با (F-V) و (

بيان شد؛ برای m mوره توليدى تكرار شود، اين مهم است كه براى تعيين ارزش حال سودهاى
 آنها در طول زمان تبديل كنيه، تا بتوان از حساب ديفرانسيل استفاده كرد. هنگام گفتگو از روش بهينه سازى همراه با ترجيحات زمانى، از علامتگذارى زير استفاده خواهيم كرد: t
r نرخ بهره ترجيح زمانى در هر وإحد زمان. الرزش مركب يكك واحد هز ينه در زمان t برابر است با

رابطهُ بين نرخ بهره براثى دورهّ توليد (مثلا" i) و نرخ بهره براى واحد زمان (r) حنين
است :

$$
(1+i)=(1+r)^{t} \text { or } i=(1+r)^{t}-1
$$

ס نرخ بهرهأى است كه همان كار rرا در تنزيل پيوسته يا ربح مركب پيو سته، انجام

$$
\text { مىدهد، بنابراين } \delta=\operatorname{Ln}(1+r) .
$$

بنابراين، π ، يعنى سودى كه در پـايان هر دوره توليد تـحققق مسىيابل، را مسى توان
بدينگوزه نوشت :

$$
\pi=p_{y} y-\left(\Sigma p_{i} x_{i}+F\right)(1+r)^{t}
$$

با استفاده از فرمول وجوه استهلاكىى ’’يوسته ، مى توان به معادل جريانى آن، يعنى سود بر واحد زمان (

$$
\begin{equation*}
\pi^{*}=\frac{\pi \delta}{(1+r)^{t}-1} \tag{9-v}
\end{equation*}
$$

از

$$
\begin{aligned}
\frac{\partial \pi^{*}}{\partial t} & =\frac{\delta(\partial \pi / \partial t)\left\{(1+r)^{t}-1\right\}-\delta \pi(1+r)^{t} \ln (1+r)}{\left\{(1+r)^{t}-1\right\}^{2}} \\
& =0
\end{aligned}
$$

1. Sinking fund

$$
\begin{align*}
& \text { كه مى توان بدين صورت بازنويسى كرد : } \\
& \delta\left[\frac{\partial \pi}{\partial t}\left\{(1+r)^{t}-1\right\}-\pi(1+r)^{t} \ln (1+r)\right]=0 \tag{11-v}\\
& \text { كه } 0 \\
& \frac{\partial \pi}{\partial t}\left\{(1+r)^{t}-1\right\}-\pi(1+r)^{t} \ln (1+r)=0 \tag{IY-V}
\end{align*}
$$

با تقسيم طرفين بر ربح مركب بيو سته، مىتوان (IY-V) را با بدينگونه بازنويسى كرد :

$$
\frac{\partial \pi}{\partial t}(1+r)^{-t}=\frac{\pi \delta}{(1+r)^{t}-1}=\pi^{*}
$$

كه شرطى برایى حداكثر جريان سود در واحد زمان، به دست مىدهده. t بنابراين، با وجود ترجيحات

 پإيدار سود در واحد زمان را متناظر با ارزش حال سودهاى كلى مربوط به mt دوره، بدست آورد.
اگگر R و ,
$R=p_{y} y, \quad C=\left(\Sigma p_{i} x_{i}+F\right)(1+r)^{2}, \quad \pi=R-C$
Tآنگاه مى توان (I (I) را به اين صورت بيان كرد :
$\delta\left[p_{y} y-\left\{\left(\Sigma p_{i} x_{i}+F\right)(1-1-r)^{t}\right\}\right] / \partial t=(1+r)^{t} \pi^{*}$
$\frac{\partial\left(p_{y} y\right)}{\partial t}-\frac{\partial\left\{\left(\sum p_{i} x_{i}+F\right)(1+r)^{t}\right\}}{\partial t}=(1+r)^{t} \frac{\pi \delta \quad \text { ي }}{(1+r)^{t}-1}$

$$
\frac{\partial R}{\partial t}-\frac{\partial C}{\partial t}=t \frac{\pi}{t} \delta \frac{(1+r)^{t}}{(1+r)^{r}-1} l
$$

$$
\frac{\partial R}{\partial t}=\frac{\partial C}{\partial t}+\frac{\pi^{0} t \delta(1+r)^{t}}{(1+r)^{t}-1}
$$

يا

برایى فر آيند توليد وابسته به زمان كه با (F-V) و ((A-V) بيان شده است ، شرط بالا براى تخصيص بهينه نهاده

$$
\begin{equation*}
\frac{\partial R}{\partial x_{i}}=\frac{\partial C}{\partial x_{i}}+\frac{\left(\frac{\partial t}{\partial x_{i}}\right) \pi^{0}(1+r)^{t} \delta t}{(1+r)^{t}-1} \tag{If-V}
\end{equation*}
$$

 بزرگتر از يك خواهد بود. بنابراين ، ترجيح زمانى، هزينه فرصت عامل نهايیى اش را افزايش مىدهد؛ كه دست آخر، سطح نهاده

Y-Y بهينهسازى مقيد
شرايط بهينهسازى بدون ترجيح زمانى را وقتى توليد مقيد است، به گونهاى كه برای با
 تابع هدف گنجانده شوند. فرض كنيد فر آيند توليد به صورت آ زير زير باشد :

$$
\begin{align*}
y & =f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{i} & =f_{i}(t), \quad i=1,2, \ldots, n \tag{17-V}
\end{align*}
$$

كه بايد به طور بيو سته با محدويت C شود. بنابراين، C/t يا
 داشت:

$$
\left.\pi^{0}=\left\{p_{y} y-\Sigma p_{i} x_{i}-F\right\} / t+\lambda_{\{ }\left(\Sigma p_{i} x_{i}-C\right) / t\right\}
$$

اكنون، با مشتقگيرى از اين تابع نسبت به بايد يك يك آنها وا برابر باصفر قرار داد تا مقادير نهادههاى حدا كثركنتنده سود بدست آيد.

بنابراين:

$$
\begin{gather*}
p_{y}\left(\partial y / \partial x_{i}\right)-p_{i}-\left(\partial t / \partial x_{i}\right)\left(p_{y} y-\Sigma p_{i} x_{i}-F\right) / t \\
+\lambda p_{i}-\lambda\left(\partial t / \partial x_{i}\right)\left(\Sigma p_{i} x_{i}-C\right) / t=0 \tag{1v-v}\\
\Sigma p_{i} x_{i}-C=0
\end{gather*}
$$

גرا مى توان از مجموعه معادلأت (IV-V) و (IN-V) حذف كرد و n معادله بدست
آورد: يعنى :

$$
\begin{gather*}
N M R_{1} / N M R_{i}=p_{1} / p_{i} \tag{19-V}\\
x_{1}=C / p_{1}-\Sigma\left(p_{i} / p_{1}\right) x_{i}
\end{gather*}
$$

X X_{i}

$$
N M R_{i}=p_{y}\left\{\partial y / \partial x_{i}\right\}-p_{i}-\left\{\partial t / \partial x_{i}\right\}\left\{p_{y} y-\Sigma p_{i} x_{i}-F_{\}} / t\left(\gamma^{\circ}-V\right)\right.
$$

بنابراين، ، NMR ${ }_{i}$ هميشه برابر با صفر نيست، آنگونه كه در حالت بدون محدوديت بود.

تمرين
ا-Y
 ترجيحات زمانى، بيان كنيد. T-Y باداشتن اين فرآيند توليد وابسته به زمان :

$$
y=2500+10 x_{1}-0.2 x_{1}^{2} \quad x_{1}=t
$$

و داشتن
واحد زمان 1.5 درصد مىباشد؛ مقادير بهينه نهاده 1 , 1 ادر شرايط زير محاسبه كنيد : (() بدون توجه به عامل زمان (Y) بدون هرگونه ترجيح زمانى و (Y)

منابع براى مطالكه ييشتر

Dillon, John L., The Analysis of Response in Crop and Livestock Production, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 3.
Henderson, J.M. and R.E. Quandt, Microeconomic Theory: A Mathematical Approach, 3rd ed., McGraw-Hill, New York, 1980, Ch. 12.
Winder, J.W.L. and G.I. Trant, "Comments on Determining the Optimum Replacement Pattern", Journal of Farm Economics, 43(4), 1961, pp 939-951.

بهينهسازى باريسك و عدم اطمينان

تأثير زمان بر بهيندسازى، در فصل V بحث شد. بنابراين، خواننده اكنون مى تواند به

 در اين شرايط، روشهاى استاندارد بهينهسازى تقريباً فرو مىريزند. با اين وجود ريا هنوز بايد تصميمگيرى كرد. در اين حالت، به جاى تعيين مقادير دقيق متغير هاى دادمایى و و ستادهاىى، فقط مى توان دامنهاى يا احتمالى براى يكك مقدار معين ارائه دادر.

 در شرايط ريسك و عدم اطمينان، نمىتواند وند وجود داشته باشد. متأسفانه اقتصادردانانا هنوز موفقيتى در اين زمينه بدست نياوردهاند. تلاش آنها به جستجو در تاريكى مى ماند. چششماندانداز موفقيت در آينده نزديك نيز اميدبخش نيست. با آن كه تلاشهاى فراوانى نيز در اين زمينه دشوار چهره مى بندد.

 آنهاست، برای تحليل، بسيار ناكافى هستند. با اين وجود، شرايط ريسك و و عدم اطمينان، از از

وضعيتهايى، گفتگو مى شود.

- ا- اجززاء ريسك

اجزاء ريسك در يكك تابع توليد رابا نوشتن معادله سود، بهتر مى توان دركك كرد.

$$
\begin{equation*}
\pi=p_{y} y-\Sigma p_{i} x_{l}-F \tag{1-1}
\end{equation*}
$$

 i i و i هتاد أمين نهاده مىباشند:

عامل زير باشد :
ا-ريسكت قيمت:
 يا هردوى آنها باشد.

1. Uncertainty
2. Predetermined variables
3. Decision variables
4. Uncertain variables

سياستگذارثى هاى دولتى در بسيارى از كثور ها ها در مواقع بسيارى، اين انواع ريسكك رادر كثاورزى، يا اساساً حذف مى كنتند يا حداقل كاهش مىدهند.「-ريسكتمحصول:
در اين حالت، عدم اطمينان در جزء y معادله (1-1) وجود دارد. اين جزء ريسك،

 مى باشد. اين نوع عدم اطمينان، ناشى از اثر زير مجموعه متغيرهاى كتترل نشـده و نامعين , $x_{m+2}, \ldots . . .$.

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n} ; x_{n+1}, x_{n+2}, \ldots, x_{m} ; x_{m+1}, \ldots, x_{l}\right)
$$

كه yرا مى توان بازدهى محصول گرفت. از آن'جاكه مقادير متغير هاى نامعين، ناشناخته هـتـند، وران نـى توان بان با اطمينان تعيين كرد. اما ما مى توان يك يك
 مجزا رادر نظر گرفت :
(الف) زيرمجموعه متغيرهاى نامعين، اثر مستقلى بر y دارند.
 ، X_{2}, ... , Xn
(ب) متغيرهاى نامعين داراى تأثير متقابل با متغيرهاى تصميمگيرى هستند.

"ــريسك در مقدار متغير هاى تصميمكيرى:
ممكن است به دلايل گوناگون، در مقادير نهادهماى كتترل شده رابطه ((1-1) ريسكى وجود داشته باشد.
†-
اين ريسك نيز مى توان ناشى از تأثير F، يعنى هزينه ثابت در (1-1) باشد. تجربه نثان مىدهلد كه ريسكههاى نوع سوم و حها گرفت. بنابراين، بايد توجهمان را تنها به ريسك ناشى از محصول و وَيمت محصول معطوف

در (1-1) ، توزيع احتمال مشترك مقادير متغير هاى تصميمگيرى،
$p\left(\pi \mid x_{1}, x_{2}, \ldots, x_{n}\right)=p\left\{\left(p_{y} y-\Sigma p_{i} x_{i}-F\right) \mid x_{1}, x_{2}, \ldots, x_{n}\right\}(\mu-\Lambda)$

اما توزيع احتمال شكل خواهند بود. اما ميانگين توزيع اول نـبـت به دومى، به اندازه خو اهد بود.
بنابراين، محاسبه مقادير بهينه
 توزيع هاى احتمال جانثين، ، رتبه بندى شوند.

r-^

 زير بحث مى شود.
(-تنزيلريسكى'
كاربرد اين ملا كك براى تعيين محصولات يا قيمتهاى احتمالى، در يك تـحليل

1. Risk Discounting

اقتصادي بيشتر ستتى، مى باشد. اين روش، بيش فرض مى مكند كه محصولا لات / قيبتها ممكن
 روشى، كلاٍ اختيارى است و وبايهايى منطقى ندارد.

 موجود كه در تعريف ملا كك وارد مىشوند (مثل درآمد، در اين مثال) نيز مقدار يگانهانى داشته باشند.

「-ارارزش انتظارى'

[^37]اين ملا كك را باكمكك مثال سادهاى نشان مىدهيم. يك متغير تصادفى، X X رادر ري نظر

X_{i}	p_{l}	S_{l}
1	0.1	-10
2	0.2	0
3	0.3	+10
4	0.2	+20
5	0.2	+40

اين مثال را حششم|نداز تصادفى '

$$
\begin{aligned}
& E_{A_{1}}=\sum_{i-1}^{s} p_{i} S_{i} \\
& =0.1(-10)+0.2(0)+0.3(10)+0.2(20)+0.2(40) \\
& =14 \\
& \text { اكنون يك حشّمانداز تصادفى ديگر، مثل } \\
& E_{A_{2}}=\sum_{i=1}^{5} p_{i} S_{i}=12
\end{aligned}
$$

$$
E_{A_{1}}>E_{A_{2}}
$$

اين را به راحتى مى توان به هالت عمومى شامل n چششمانداز، گَسترش داد. يـعنى

$$
\text { جشُمانداز } A_{i} \text { حششمانداز } A_{j} \text { مرجح است ، اگر : }
$$

$$
E_{A_{i}}>E_{A_{j}}, \quad i=1,2, \ldots, n ; i \neq j
$$

ارزش انتظارى تركيبى از دو يا چند چششماندا

[^38]مجموعهاى ديگر نيز مى توان مورد استفاده قرار داد.
اين ملا كك، از كاستى هاى زير رنج می میبرد :

دشوار است.

「「_معادلهاى قطعى ${ }^{7}$
 ريسكگريزى است. اين روش، ديگر فرض نمى ركند كه ترجيحات، نسبت به پـون، خـطـى

هستند.
تصميمگيرندهاى را در نظر بگيريد كه با يكك توزيع احتمال مربوط به درآمد خالص
 درآمد خالص انتظارى و يكى از شاخصههاى آمارى پرا كندگى، است. مـى توان مـيـانگين

 بر پايهايى فروض مىتوانيم براى ميانگين (E) و واريانس (V) مجمموعهاى از منحنىهانى

1 Quasi - certain magnitude
3. St. Petersburg game
2. Bernoulli
4. Certainty Equivalents

 V V = O V نقطه بهينه با تغيير مجمنوعه منجنى هاى بى تفاوتى ريسكى، تغيير مىكند.

اين روش نيز براى تحليل شرايط عدم اطـمينان، مسحدوديتهاث خـودش رادارد.

[^39]نخست اين كه روش انتخاب نقطه Pبر روى خط مرزى، قابل ايراد است. خودِ فرض اساسى
 ريسك محدّب است و مسأله خط مرزى، همگى سؤالل برانگيزند. به نظر مى رسد تا كـنـون

 وجود ندارد. ايراد ديگرى كه به اين روش مى رشود، اين است است كه استفاده كننده از اين روش
 انتخاب از ميان فرصتهالى از هم جدال، مى يردازد د. در حاليكه در واقعيت؛ مسألها انتخاب از از
 اين نكته درستى است كه به طور كلى ريسك گريز چنداشتن همهـ، يك فرض فر افر افراطى
 گر فتن ملاكك حدا كثرسازى مطلوبيت انتظارى، جبران كرد.

「_-_نظريه مطلوييت:

استفاده از روش نظريه مطلوبيت مبتنى بر قضيه مطلوبيت انتظارى است. اين روش از از
 اطمينان شناخته شده است. دراين روش، نتيجه دارای ريسك بر بر اساس مطلوبيت انـتظارى
ارزيابى مى شُو د.

برنولى به جاى ملا كك منفعت يولى انتظارى براى انجام انتخاب بهينه، ملا كك ديگرى إي

 اقتصاددانان نيست، و آن را فقط مى توان در انتخاب شرايطى كه با احتمال همراه است، به كار

1. Moral expectation
2. Von Neumann - Morgenstern
3. L.T. Savage
4. Cardinal utility

ساختن شاخص مطلوبيت فوننيومن _مورگَشترن

 تصميمگگيرنده، ساخته مى شود كه دو زير بررسى مى كنيم. | - رتبهبندى كامل ' :
برای دو گزينه ارز ارزيابى تصميمگگيرنده از گزينه ها، قابل تسرّى است، يعنى اگر او او
 r- بييوستگى

وضعيتى رادر نظر بگيريد كه در آن اساس اين اصل، يكى احتمال Pوجود دارد، 0<P<1، 1 به گونهانى است كه تصميمگيرنده ميان مهمئن و يك بليط بـخت A_{2} rــاستقلال

 بليط بخت آزمايى ديگر، L $L_{2} L_{1}$ ترجيح خواهد داد.
F F احتمال نابرابر

$$
\begin{aligned}
& \text { فرض كنيدتصميم گيرنده } L_{1}=\left(P_{1}, A_{1}, A_{2}\right) \text { وابه } A_{1} \text { ترجيح مىدهد وگير } \\
& . P_{1}>P_{2} \text { گا } L_{2}=\left(P_{2}, A_{1}, A_{2}\right)
\end{aligned}
$$

1. Complete - ordering
2. Continuity
3. Independence
4. Unequal probability

هـ بـختآزمايى مركب' :

بخت آزمايى باشد. ورض كنيد (باشد؛ آنگاه $L_{4}=\left(P_{4}, A_{1}, A_{2}\right)$ و $L_{1}=\left(P_{3}, A_{1}, A_{2}\right)$. $\mathrm{C}_{1}=P_{2} P_{3}+\left(1-P_{2}\right) P_{4}$

 بـــتا آزمايى (مـــلاً : برابر است با $L_{1}\left(P, A_{1}, A_{2}\right)$

$$
E\left[U\left(L_{1}\right)\right]=P U\left(A_{1}\right)+(1-P) U\left(A_{2}\right)
$$

$$
\text { اما، اين جا مه/ه } P=
$$

$$
U\left(A_{1}\right)=U(0)=0
$$

$$
U\left(A_{2}\right)=U(1,000)=100
$$

بدين ترتيب،

$$
E\left[U\left(L_{1}\right)\right]=.50(0)+.50(100)=50
$$

اكنون اين سؤالن براى تصميمگيرنده هيش مى آيد كه مـعادل قطعى بـخت آزماييِ
 يك شانس پنجاه ـ ينجاه براى بدست آوردن صفر روپيه يا هزار روپيه داشته باشيد، و در برابر آن، پيشامد قطعي بدست آوردن x روييه وجود داشته باشد، كدام يك از اين دو انتخاب را

 بختآزَمايى بنجاه - ينجاه براى بدست آوردن صفر روپيه يا هزار روبيه. بنابراين با تو جه به تابع مطلوبيت ، سه نقطه بدست مى آيد :
(i) $U(0)=0$,
(ii) $U(200)=50$,
(iii) $U(1,000)=100$

در اين روش، زنجيرهاى از بخت آزمايى هاى چنجاه ـ ينجاه ساخته مى شود كه هر كدام از آنها متضـمن يكك مقدار پايه و مقدار معادل قطعي حاصل از مجموعه شرايط قبلى مىباشد. اين روند رو به روكردن تصميم گیرنده با حشماندازه هاى انتخابىى ساده، آن قدر ادامه
 استفاده از همين روش حتماً مىتوان تابع مطلوبيت را نيز گسترش داد. اكنون قضيه مطلوبيت انتظارى را مى توان بدين گونه بيان كرد : براى تصميم گيرندهاى كه ترجيحاتش با اصـول مـوضوعه رتـبهبندى، يـيو ستگى، اسـتقلال، احـتمال نــابرابـر، و بخت آزمايى مركب سازگار است، اين موارد وجود دارد : (الف) يكـ توزيع احتمال يگانهاى برای پيشامدهاى مربوط به راهحلهاى انتخابى داراى ريسكى، و (ب) يكك تابع مطلوبيت Uكه با اندازه گيرى كاميابى حاصل از هر راه حلى دارایى ريسك، يكك شاخص مطلوبيت يگانهانى رئى بدست مىدهد.
هنگگامى كه احتمالات ذهنى، از قانونِ معمول احتمال تبعيت مىكند، تابع مطلوبيت دارای ويزگيهاى زير است :
 بزرگكتر از شاخص مطلوبيت ${ }_{2}$ خــواهــد بـود و و بـرعكس. ايـن بــدين مـفهوم است كـه
 (Y) مطلوبيت يك حشُمانداز تصادفى، عبارت است از مقدار مسطلوبيت انـتظارى (Y)
 اساس توزيع احتمال P(a)توزيع شده است، آنگاه مطلوبيت Aبه صورت زير تعيين مى شود :

$$
\begin{align*}
U(A) & =E[U(A)] \\
& =\int_{-\infty}^{\infty} U(a) p(a) d(a)
\end{align*}
$$

 جولگى و ديگُ شاخصصهاى توزيع احتمال P(a) را به حساب مى آورد.

 فقط براى يكك تبديل خطى مثبت تعريف شده است، مقايسه مقادير مطلوبيت را ميان افراد،

بى معنى مى سازد. يعنى با داشتن تابع مطلوبيت U هر تابع ديگرى همحچون :

$$
U^{*}=a_{1} U+a_{2}, \quad a_{1}>0
$$

همان كار تابع اوليه را مىكند. بنابراين، با توجه به U، تعداد بىنهايتى شاخص وجود دارد كه بيانگر اين شدت ترجيحات هستند.
بگذاريد نشان دهيم كه شدت ترجيحات با تبديل خطى مثبتى كه در (1-7) T T آمـده
 ،

	U	$\Delta_{1} U$
A_{1}	7	
A_{2}	9	2
A_{3}	13	4
A_{4}	21	8

اگر شاخص

$$
U^{*}=3 U+1
$$

خو اهند بود. ارقام اين شاخص جديل، همراه با تفاضلهاى مرتبه اول Tنها، جدول بندى شدهاند:

	U^{*}	$\Delta_{1} U^{*}$
A_{1}	22	
A_{2}	28	6
A_{3}	40	12
A_{4}	64	24

به سادگى مى توان دريافت كه همانند قبل، تفاضلهاى مرتبه اول بياني فطعاً بر 3 ترجيح دارد، و به همين ترتيب بنابراين، قضيه مطلوبيت انتظارى، ابزارى بد بدست مىدهـد
 است. بنابراين، اين قضيه مستلزم حدا كثر سازى مطلوبيت انتظارى است.
-
در شرايط عدم اطمينان، تابع هدف بايد بر بر حسب مطلوبيت نوريت نوشته شود. بنابراين، مسأله
بهينهسازى را مى توان به صورت زير اير بيان كري
با داشتن تابع توليد (Y-1) ، بايد مقادير

$$
\begin{align*}
U & =U(\pi)=E[U(\pi)] \\
& :=\int_{-\infty}^{\infty} U(\pi) p\left(\pi \mid x_{1}, x_{2}, \ldots, x_{n}\right) d(\pi)
\end{align*}
$$

 كلى اقتصادى تعريف شده است (و نه بر مبناى يك واحد فـن فـى)، و

توزيع احتمالى ذهني سود است، بر اساس مقادير متغيرهاى تصميمگيرى. برخى از جنبههاى عمومى تابع سود مطلوبيتى، حنين است :
ا- ا-
مربوط به سود، صعودى باشد، يعنى
مثبت برای سود است. شكل درجه دورم

$$
\begin{aligned}
& U=\pi+a \pi^{2}
\end{aligned}
$$

مى سازد.
كو جككتر از، بزرگتر از، يا مساوى با صفر است، بسـته بـه ايـن كــه $d^{2} u / d \pi^{2}-r$

r- برای همه توابع هدف مطلوبتتى غيرخطى، داريم :

$$
U(k \pi) \neq k U(\pi)
$$

كه براى هر ثابتِ غير صفر، k才1|ست؛ و نيز داريم :

$$
U\left(\pi_{1}+\pi_{2}\right) \neq U\left(\pi_{1}\right)+U\left(\pi_{2}\right)
$$

براثى هر مقدار
ريسك، ارزيابیى بايد مبتنى بر سود، يعنى ؛
 تر تيب، مطلوبيت بايل، نه بر يكك يايه فنى، آن گونه كه در تحليل بدون ريسكك انجام مى شـد، بلكه بر مبنای يكك منفعت كلى برای كِل كسب و كار، اندازه گيرث شود. بنابراين، هنين انگاشته مى شود كه ((1 (1 بيانگر يك منغعت كلى اقتصادى است و به همين ترتيب است تابع هدفٍ مطلوبيتي (V-N).

Fـ تابع هدفِ مطلوبيتى، صرفاً توصيفكننده ترجيحات تصميمگيرنده است. آن را
مى توان به عنوانِ درست يا غلط، كارا يا ناكارا، طبقهبندى كرد.
هـ باگرفتن اميد رياضى هاى يكك بسط سرى تيلور ' ، تابع هدف مطلوبيتي انتظارى
(رامى توان به عنوان تابعى از گشتاور هأى سود بيان كرد، يعنى :

$$
U=g\{E(\pi), V(\pi), S(\pi), \ldots\}
$$

كه (مر تنه بالاتَرِ حولِ ميانگين سود هستند. معمولاً در يكك جنين تحليلى، تنها مالاحظه گشتاور هاى مر تبه اول و دوم سود؛ يا حدا كثر ، گثتاور مر تبه سود سوم، كافى است.

1. Taylor series expansion
^-

 بيرون است. خوانندهٔ علاقمند به اين موضوعات مات مى تواند باند به منابعى كه در ها يايان همين فصل داده شده است، مراجعه كند. فرض كنيد تابع توليد به صورت زير باشد :

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{m} ; x_{m+1}, \ldots, x_{l}\right) \tag{9-1}
\end{equation*}
$$

كه تنها شله، و و غيرقطعى، داراى رابطه متقابل با متغير تصميمگيرى
 نوشت :

$$
\pi=p_{y} y-p_{1} x_{1}-F
$$

 ريسك، تنها در

$$
\begin{equation*}
U=\int_{-\infty}^{\infty} U(\pi) p\left(\pi \mid x_{1}\right) d(\pi) \tag{11-1}
\end{equation*}
$$

 ميانگين و واريانس سود باشد، بنابراين :

$$
U=g[E(\pi), V(\pi)]
$$

V به عنوان يك شرط لازم براى حدا كثر سازى U در (IY- $ل$

$$
\begin{align*}
& \text { نسبت به x } x_{1} \text { برابر با صفر قرار مىدهيم. يعنى : } \\
& \frac{d U}{d x_{1}}=\frac{\partial U}{\partial E(\pi)} \frac{d E(\pi)}{d x_{1}}+\frac{\partial U}{\partial V(\pi)} \frac{d V(\pi)}{d x_{1}}=0 \\
& \text { با تقسيم هر دو طرف (ی-یץ) بر } \frac{\partial U}{\partial E(\pi)} \text { خواهيم داشت : } \\
& \frac{d E(\pi)}{d x_{1}}+\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right] \frac{d V(\pi)}{d x_{1}}=0 \\
& \text { با Tارايش مجلد معادله (IF-N) مىتوان نوشت : } \\
& -\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]=\left[\frac{d E(\pi)}{d x_{1}} / \frac{d V(\pi)}{d x_{1}}\right] \tag{يا}\\
& -\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]=[d E(\pi) / d V(\pi)]
\end{align*}
$$

 يعنى RUS

$$
\begin{equation*}
R U S_{V^{\prime} E}=d E(\pi) / d V(\pi) \tag{17-1}
\end{equation*}
$$

بنابراين، (1 (1) اشاره دارد به برابري نرخ جانشينى در مطلوبيت، با نرخ جانشينى در

 شود (بنگريد به شكل 1 - \uparrow) . نقطه k در شكل ()

[^40]2. Iso - Utility curve
3. Frontier of production possibilities

شرإط عدم اطمينان، است.
خو اننده به ياد مى آورد كه فرض كرديم ريسك، يا در وجود دارد. به اين ترتيب، اين تحليل را مىتوان به (الف) ريسك قيمت مــحصول، (ب)
 اكنون به بر رسى اين سه گونه ريسك ميتر ديردازيم .
$E(\pi)$

شكل (^-
در نضاى مربوط به ميانگين و واريانس سود

ريسك قيمت محصول (${ }^{\prime}$ (${ }^{\prime}$ (
براى به دست آوردن مقدار بهينه ${ }^{\text {ا، }}$ ، نخست ميانگين و واريانس π را با توجه بـه
 است، به گونهاى كه (N(y)، صفر مى باشد. بنابراين :

$$
E(\pi)=y E\left(p_{y}\right)-p_{1} x_{1}-F
$$

$$
V(\pi)=y^{2} V\left(p_{y}\right)
$$

با گُرفتن مشتقهاى مرتبه اول (I)

$$
\text { (} 1 \wedge-\wedge \text {) ، خو اهيم داشت : }
$$

$$
\begin{align*}
& \frac{d E(\pi)}{d x_{1}}=E\left(p_{y}\right) \frac{d y}{d x_{1}}-p_{1} \tag{19-1}\\
& \frac{d V(\pi)}{d x_{1}}=2 V\left(p_{y}\right) y \frac{d y}{d x_{1}} \tag{0}
\end{align*}
$$

 زير به دست مى آيد :

$$
\left[E\left(p_{y}\right) \frac{d y}{d x_{1}}-p_{1}\right]+\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]\left[2 V\left(p_{y}\right) y \frac{d y}{d x_{1}}\right]=0
$$

يا

$$
E\left(p_{y}\right) \frac{d y}{d x_{1}}=p_{1}-\left[\frac{\partial U}{\partial}\left|\frac{\partial U}{\partial(\pi)}\right| \frac{\partial}{\partial E(\pi)}\right]\left[2 V\left(p_{y}\right) y \frac{d y}{d x_{1}}\right]
$$

$$
E\left(\rho_{y}\right) \frac{d y}{d x_{1}}=p_{1}+R U S_{V E} 2 V\left(p_{y}\right) \frac{d y}{d x_{1}}
$$

 (Y)-1) هزينه عامل نهايى است كه دو بخش

نهايى تغيير قيمت مـحصول لــننى (RUS

(y) ريسكمحصصول

اكنون وضعيتى را بر رسى مى كينم كه فقط در y عدم اطمينان وجود دار دارد. بنابراين، با با

$$
\begin{gather*}
E(\pi)=p_{y} E\left(\jmath^{\prime}\right)-p_{1} x_{1}-F \\
V(\pi)=p_{y}^{2} V\left(y^{\prime}\right) \tag{}
\end{gather*}
$$

() (

$$
\begin{align*}
& \frac{d E(\pi)}{d x_{1}}=p_{y} \frac{d E(y)}{d x_{1}}-p_{1} \\
& \frac{d V(\pi)}{d x_{1}}=p_{y}^{2} \frac{d V(y)}{d x_{1}}
\end{align*}
$$

با جايگزين كردن (YF-

$$
\left[p_{y} \frac{d E(y)}{d x_{1}}-p_{1}\right]+\left[\left.\frac{\partial U}{\partial V(\pi)} \right\rvert\, \frac{\partial U}{\partial E(\pi)}\right]\left[p_{y}^{2} \frac{d V(y)}{d x_{1}}\right]=0
$$

$$
p_{y} \frac{d E(y)}{d x_{1}}=p_{1}-\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]\left[p_{y}^{2} \frac{d V(y)}{d x_{1}}\right]
$$

$$
\begin{equation*}
p_{y} \frac{d E(y)}{d x_{1}}=p_{1}+R U S_{V E}\left[p_{y}^{2} \frac{d V(y)}{d x_{1}}\right] \tag{ץ-1}
\end{equation*}
$$

 محصول وجود داشت، اين جا نيز مقدار بهينه مقايسه با وضعيتى كه ريسك محصول وجود ندارد، كمتر است.

 ريسك آمارى مستقل هستند. اكنون اثر اين دوگونه ريسك را را بر ابر مقدار بهينه

$$
E(\pi)=E\left(p_{y}\right) E(y)-p_{1} x_{1}-F
$$

$$
V(\pi)=\left[E\left(p_{y}\right)\right]^{2} V(y)+[E(y)]^{2} V\left(p_{y}\right)+V\left(p_{y}\right) V\left(\jmath^{\prime}\right) \quad(Y \wedge-\wedge)
$$

با گر فتن مشتق هاى مر تبه اول (Y) و E و

$$
\frac{d E(\pi)}{d x_{1}}=\left\{E\left(p_{y}\right) \frac{d E(y)}{d x_{1}}\right\}-p_{1}
$$

$\frac{d V(\pi)}{d x_{1}}=\left[\left\{E\left(p_{y}\right)\right\}^{2}+V\left(p_{y}\right)\right]\left\{\frac{d V(y)}{d x_{1}}\right\}+2\left\{V\left(p_{y}\right) E(y)\right\}\left\{\frac{d E(y)}{d x_{1}}\right\}\left(r_{\circ-\Lambda}\right)$
اكنون با جايگزين كردن مقادير در معادله (1F-1F) ، داريم :

$$
\left[E\left(p_{y}\right) \frac{d E(y)}{d x_{1}}-p_{1}\right]+\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]\left[\left\{\left[E\left(p_{y}\right)\right]^{2}\right.\right.
$$

$$
\begin{aligned}
&\left.\left.+V\left(p_{y}\right)\right\} \frac{d V(y)}{d x_{1}}+2 V\left(p_{y}\right) E(y) \frac{d E(y)}{d x_{1}}\right]=0 \\
& E\left(p_{y}\right) \frac{d E(y)}{d x_{1}}= p_{1}-\left[\frac{\partial U}{\partial V(\pi)} / \frac{\partial U}{\partial E(\pi)}\right]\left[\left[\left\{E\left(p_{y}\right)\right\}^{2}\right.\right. \\
&\left.\left.+V\left(p_{y}\right)\right] \frac{d V(y)}{d x_{1}}+2 V\left(p_{y}\right) E(y) \frac{d E(y)}{d x_{1}}\right]
\end{aligned}
$$

$$
\begin{align*}
E\left(p_{y}\right) \frac{d E(y)}{d x_{1}}= & p_{1}+R U S_{V E}\left[\left\{\left[E\left(p_{y}\right)\right]^{2}+V\left(p_{y}\right)\right\} \frac{d V(y)}{d x_{1}}\right. \\
& \left.+2 V\left(p_{y}\right) E(y) \frac{d E(y)}{d x_{1}}\right]
\end{align*}
$$

 محصول و هم ريسك قيمت محصول وجود دارد. اين رابطه مستلزم برابـرى مسيان الارزش

 جاكه آن بخش از هزينه نهايى غير از 1 (جمله دوم

 فرد ريسكك يذير، مقدار بهينه نهاده در شرايط عدم اطمينان، افزايش مى يابد.
 حدا كثر سازى تابع هدف مطلوبيتى، يعنى آلى
 روشهاى تحليل عددى، بطور خودكار مورد توجه قرار مىگیی انيرند. اثر وجود ديسك؛، تنها در قيمت محصول، تنها در محصول و همز مان در محصصول و

 (X (X) بز رگتر از مقدار بهينه آن با وج
 داريم:

$$
x_{10}>x_{1 p}>x_{1 y}>x_{1 p y}
$$

 فرض كاملاً بر عكســ باشد.

تعميه به hمتغير تصميهگيرى

بسيار ساده است كه اين تحليل را به حالت n متغير تصميمگيرىى، وقتى قيدى وار وجود

ريسك در حالت nمتغير تصميمگيرى، دقيقاً همانند حالت يكك متغير است. در اين حالت، ما به جاى

 مقدار بهينه هر كدام از اين n متغير تصميمگيرى مى شود.

منابع براى مطالعه بيشتر

Anderson, J.R., J.L. Dillon and J.B. Hardaker, Agricultural Decision Analysis, Iowa State University Press, Ames, Iowa, 1977.
Bernoulli Daniel, "Exposition of a New Theory on the Measurement of Risk', Papers of the Imperial Academy of Sciences in Petersburg, V., 1938, pp 175-192 (trans. by Loise Sonner, Econometrica, XXII (1), 1954, pp 23-36).
Dillon, J.L., The Analysis of Response in Crop and Livestock Production, 2nd ed., Pergamon Press, Oxford, 1977, Ch. 4.
Dillon, J.L. and J.R. Anderson, "Allocative Efficiency, Traditional Agriculture and Risk", Anerican Journal of Agricultural Economics, 53(1), 1971, pp 26-32.
Lutz, Friedrich and vera Lutz, Theory of Investment of the Firm, Princeton University Press, Princeton, 1951.
Singh, I.J., "Utility Approach to the Analysis of Risky Farm Decisions", Indian Journal of Agricultural Economics, 34(1), 1979, pp 68-78.

Introduction to The Ecomomics

 ofAgricultwral Production

by :

P.L. SANKHAYAN

Translated by :

N. Akbari

M. Renani

$$
\begin{aligned}
& \text { ISBN } 964-90648-3-4 \\
& 994-9.94 \wedge-r-4 \text { شابكِ4 }
\end{aligned}
$$

[^0]: 7. Embodied and Disembodied
[^1]: 1. The Agricaltural Production Function 2. Biological
[^2]: 1. Types of production functions
 2. First degree polynomial
 3. Second degree polynomial in $x_{i}^{b i}$
 4. A square root function
 5. Mitscherlich or spillman function
[^3]: 1．Cobb－douglas or power function
 2．Generalized Cobb－Douglas function
 3．Transcenedental function
 4．Translog function
 5．Resistance function

[^4]: 1. The Constant Elasticity of Substitution function
[^5]: 1. Exact nature .
[^6]: 1. Average product of Input X_{i}
[^7]: 1. Elasticity of production
[^8]: 1. Isoquant Segment
[^9]: 1. Rate of technical subtitution
[^10]: 1. Distinct Peak
[^11]: 1. Cost, Supply and Demand functions
[^12]: 1. non - profit goals
 2. Normative
 3. Supply repsonse
 4. "Ought"
 5. actual
 6. as it is
 7. Positive supply function
[^13]: 1. Marginal physical product
[^14]: 1. Normative demand function
[^15]: 1. The Methodology of Production Function Analysis
[^16]: 1. Cobb-Douglas production function
 2. Interpolative robustness
 3. Extrapolative robustness
[^17]: 1. Aggregation
[^18]: 1. Entepreneurial logic
[^19]: 1. Experimental Data
[^20]: 1. Non-Experimental Data.
[^21]: 1. The farrar-Glauber test
[^22]: 1. Three - stage Least Squares Method
[^23]: 1. Linear production function
[^24]: 1. Farm Management
[^25]: 1. Well-behaved quadratic production function
[^26]: 1. Von leibig point
[^27]: 1. Ridge line equations
[^28]: 1. Farm Management
[^29]: 1. Quadratic production function
[^30]: 1. Thilau
[^31]: 1. Strictly concave
[^32]: 1. Transcendental production function
 2. Zellner-Revankar production function
 3. Nerlove - Ringstad production function
[^33]: 1. Euler's Theorem
[^34]: (م) واحد اندازه گيرى سطح، برابر با FofV متر مربع 1

[^35]: 1. Normalized profit
[^36]: 1. Shephard's or Hotelling's Lemma
[^37]: 1. Expected Value
[^38]: 1. Chance prospect
[^39]: 1. Risk-indifference curves
[^40]: 1. Rate of utility Substitution (RSU)
